
Coaster Documentation
Release 0.7.0

Hasgeek

Jul 23, 2021

Contents

1 Coaster documentation 1
1.1 Coaster types . 1
1.2 App configuration . 1
1.3 Logger . 19
1.4 Assets . 20
1.5 Utilities . 21
1.6 Miscellaneous utilities . 22
1.7 Date, time and timezone utilities . 29
1.8 Text processing utilities . 30
1.9 Markdown processor . 30
1.10 PostgreSQL query processor . 31
1.11 Utility classes . 32
1.12 Authentication management . 35
1.13 View helpers . 36
1.14 Miscellaneous view helpers . 36
1.15 View decorators . 37
1.16 Class-based views . 42
1.17 SQLAlchemy patterns . 46
1.18 SQLAlchemy mixin classes . 47
1.19 SQLAlchemy column types . 54
1.20 Helper functions . 57
1.21 Role-based access control . 58
1.22 SQLAlchemy attribute annotations . 65
1.23 Immutable annotation . 66
1.24 Model helper registry . 66
1.25 Enhanced query and custom comparators . 67
1.26 States and transitions . 69
1.27 Database session and instance . 76
1.28 Natural language processing . 76

2 Indices and tables 77

Python Module Index 79

Index 81

i

ii

CHAPTER 1

Coaster documentation

Coaster contains functions and db models for recurring patterns in Flask apps. Coaster is available under the BSD
license, the same license as Flask.

1.1 Coaster types

coaster.typing.SimpleDecorator = typing.Callable[[typing.Callable], typing.Callable]
Type for a simple function decorator that does not accept options

1.2 App configuration

class coaster.app.KeyRotationWrapper(cls, secret_keys, **kwargs)
Wrapper to support multiple secret keys in itsdangerous.

The first secret key is used for all operations, but if it causes a BadSignature exception, the other secret keys are
tried in order.

Parameters

• cls – Signing class from itsdangerous (eg: URLSafeTimedSerializer)

• secret_keys – List of secret keys

• kwargs – Arguments to pass to each signer/serializer

class coaster.app.RotatingKeySecureCookieSessionInterface
Replaces the serializer with key rotation support

class coaster.app.Flask(import_name: str, static_url_path: Optional[str] = None, static_folder:
Optional[str] = ’static’, static_host: Optional[str] = None, host_matching:
bool = False, subdomain_matching: bool = False, template_folder:
Optional[str] = ’templates’, instance_path: Optional[str] = None, in-
stance_relative_config: bool = False, root_path: Optional[str] = None)

The flask object implements a WSGI application and acts as the central object. It is passed the name of the

1

Coaster Documentation, Release 0.7.0

module or package of the application. Once it is created it will act as a central registry for the view functions,
the URL rules, template configuration and much more.

The name of the package is used to resolve resources from inside the package or the folder the module is
contained in depending on if the package parameter resolves to an actual python package (a folder with an
__init__.py file inside) or a standard module (just a .py file).

For more information about resource loading, see open_resource().

Usually you create a Flask instance in your main module or in the __init__.py file of your package like
this:

from flask import Flask
app = Flask(__name__)

About the First Parameter

The idea of the first parameter is to give Flask an idea of what belongs to your application. This name is used to
find resources on the filesystem, can be used by extensions to improve debugging information and a lot more.

So it’s important what you provide there. If you are using a single module, __name__ is always the correct
value. If you however are using a package, it’s usually recommended to hardcode the name of your package
there.

For example if your application is defined in yourapplication/app.py you should create it with one of
the two versions below:

app = Flask('yourapplication')
app = Flask(__name__.split('.')[0])

Why is that? The application will work even with __name__, thanks to how resources are looked up. However it
will make debugging more painful. Certain extensions can make assumptions based on the import name of your
application. For example the Flask-SQLAlchemy extension will look for the code in your application that trig-
gered an SQL query in debug mode. If the import name is not properly set up, that debugging information is lost.
(For example it would only pick up SQL queries in yourapplication.app and not yourapplication.views.frontend)

New in version 0.7: The static_url_path, static_folder, and template_folder parameters were added.

New in version 0.8: The instance_path and instance_relative_config parameters were added.

New in version 0.11: The root_path parameter was added.

New in version 1.0: The host_matching and static_host parameters were added.

New in version 1.0: The subdomain_matching parameter was added. Subdomain matching needs to be
enabled manually now. Setting SERVER_NAME does not implicitly enable it.

Parameters

• import_name – the name of the application package

• static_url_path – can be used to specify a different path for the static files on the
web. Defaults to the name of the static_folder folder.

• static_folder – The folder with static files that is served at static_url_path.
Relative to the application root_path or an absolute path. Defaults to 'static'.

• static_host – the host to use when adding the static route. Defaults to None. Required
when using host_matching=True with a static_folder configured.

• host_matching – set url_map.host_matching attribute. Defaults to False.

2 Chapter 1. Coaster documentation

https://flask.palletsprojects.com/en/2.0.x/config/#SERVER_NAME

Coaster Documentation, Release 0.7.0

• subdomain_matching – consider the subdomain relative to SERVER_NAME when
matching routes. Defaults to False.

• template_folder – the folder that contains the templates that should be used by the
application. Defaults to 'templates' folder in the root path of the application.

• instance_path – An alternative instance path for the application. By default the folder
'instance' next to the package or module is assumed to be the instance path.

• instance_relative_config – if set to True relative filenames for loading the con-
fig are assumed to be relative to the instance path instead of the application root.

• root_path – The path to the root of the application files. This should only be set manually
when it can’t be detected automatically, such as for namespace packages.

add_template_filter(f: Callable[[Any], str], name: Optional[str] = None)→ None
Register a custom template filter. Works exactly like the template_filter() decorator.

Parameters name – the optional name of the filter, otherwise the function name will be used.

add_template_global(f: Callable[[], Any], name: Optional[str] = None)→ None
Register a custom template global function. Works exactly like the template_global() decorator.

New in version 0.10.

Parameters name – the optional name of the global function, otherwise the function name will
be used.

add_template_test(f: Callable[[Any], bool], name: Optional[str] = None)→ None
Register a custom template test. Works exactly like the template_test() decorator.

New in version 0.10.

Parameters name – the optional name of the test, otherwise the function name will be used.

add_url_rule(rule: str, endpoint: Optional[str] = None, view_func: Optional[Callable] = None,
provide_automatic_options: Optional[bool] = None, **options)→ None

Register a rule for routing incoming requests and building URLs. The route() decorator is a shortcut to
call this with the view_func argument. These are equivalent:

@app.route("/")
def index():

...

def index():
...

app.add_url_rule("/", view_func=index)

See URL Route Registrations.

The endpoint name for the route defaults to the name of the view function if the endpoint parameter
isn’t passed. An error will be raised if a function has already been registered for the endpoint.

The methods parameter defaults to ["GET"]. HEAD is always added automatically, and OPTIONS is
added automatically by default.

view_func does not necessarily need to be passed, but if the rule should participate in routing an end-
point name must be associated with a view function at some point with the endpoint() decorator.

app.add_url_rule("/", endpoint="index")

(continues on next page)

1.2. App configuration 3

https://flask.palletsprojects.com/en/2.0.x/config/#SERVER_NAME
https://flask.palletsprojects.com/en/2.0.x/api/#url-route-registrations

Coaster Documentation, Release 0.7.0

(continued from previous page)

@app.endpoint("index")
def index():

...

If view_func has a required_methods attribute, those methods are added to the passed and auto-
matic methods. If it has a provide_automatic_methods attribute, it is used as the default if the
parameter is not passed.

Parameters

• rule – The URL rule string.

• endpoint – The endpoint name to associate with the rule and view function. Used when
routing and building URLs. Defaults to view_func.__name__.

• view_func – The view function to associate with the endpoint name.

• provide_automatic_options – Add the OPTIONS method and respond to
OPTIONS requests automatically.

• options – Extra options passed to the Rule object.

app_context()→ flask.ctx.AppContext
Create an AppContext. Use as a with block to push the context, which will make current_app
point at this application.

An application context is automatically pushed by RequestContext.push() when handling a re-
quest, and when running a CLI command. Use this to manually create a context outside of these situations.

with app.app_context():
init_db()

See /appcontext.

New in version 0.9.

app_ctx_globals_class
alias of flask.ctx._AppCtxGlobals

async_to_sync(func: Callable[[...], Coroutine[T_co, T_contra, V_co]])→ Callable[[...], Any]
Return a sync function that will run the coroutine function.

result = app.async_to_sync(func)(*args, **kwargs)

Override this method to change how the app converts async code to be synchronously callable.

New in version 2.0.

auto_find_instance_path()→ str
Tries to locate the instance path if it was not provided to the constructor of the application class. It will
basically calculate the path to a folder named instance next to your main file or the package.

New in version 0.8.

before_first_request(f: Callable[[], None])→ Callable[[], None]
Registers a function to be run before the first request to this instance of the application.

The function will be called without any arguments and its return value is ignored.

New in version 0.8.

4 Chapter 1. Coaster documentation

https://flask.palletsprojects.com/en/2.0.x/api/#flask.ctx.AppContext
https://flask.palletsprojects.com/en/2.0.x/api/#flask.ctx.RequestContext.push
https://flask.palletsprojects.com/en/2.0.x/api/#flask.ctx._AppCtxGlobals

Coaster Documentation, Release 0.7.0

before_first_request_funcs = None
A list of functions that will be called at the beginning of the first request to this instance. To register a
function, use the before_first_request() decorator.

New in version 0.8.

blueprints = None
Maps registered blueprint names to blueprint objects. The dict retains the order the blueprints were regis-
tered in. Blueprints can be registered multiple times, this dict does not track how often they were attached.

New in version 0.7.

config = None
The configuration dictionary as Config. This behaves exactly like a regular dictionary but supports
additional methods to load a config from files.

config_class
alias of flask.config.Config

create_global_jinja_loader()→ flask.templating.DispatchingJinjaLoader
Creates the loader for the Jinja2 environment. Can be used to override just the loader and keeping the rest
unchanged. It’s discouraged to override this function. Instead one should override the jinja_loader()
function instead.

The global loader dispatches between the loaders of the application and the individual blueprints.

New in version 0.7.

create_jinja_environment()→ flask.templating.Environment
Create the Jinja environment based on jinja_options and the various Jinja-related methods of the app.
Changing jinja_options after this will have no effect. Also adds Flask-related globals and filters to
the environment.

Changed in version 0.11: Environment.auto_reload set in accordance with
TEMPLATES_AUTO_RELOAD configuration option.

New in version 0.5.

create_url_adapter(request: Optional[flask.wrappers.Request]) → Op-
tional[werkzeug.routing.MapAdapter]

Creates a URL adapter for the given request. The URL adapter is created at a point where the request
context is not yet set up so the request is passed explicitly.

New in version 0.6.

Changed in version 0.9: This can now also be called without a request object when the URL adapter is
created for the application context.

Changed in version 1.0: SERVER_NAME no longer implicitly enables subdomain matching. Use
subdomain_matching instead.

debug
Whether debug mode is enabled. When using flask run to start the development server, an interactive
debugger will be shown for unhandled exceptions, and the server will be reloaded when code changes.
This maps to the DEBUG config key. This is enabled when env is 'development' and is overridden
by the FLASK_DEBUG environment variable. It may not behave as expected if set in code.

Do not enable debug mode when deploying in production.

Default: True if env is 'development', or False otherwise.

default_config = {'APPLICATION_ROOT': '/', 'DEBUG': None, 'ENV': None, 'EXPLAIN_TEMPLATE_LOADING': False, 'JSONIFY_MIMETYPE': 'application/json', 'JSONIFY_PRETTYPRINT_REGULAR': False, 'JSON_AS_ASCII': True, 'JSON_SORT_KEYS': True, 'MAX_CONTENT_LENGTH': None, 'MAX_COOKIE_SIZE': 4093, 'PERMANENT_SESSION_LIFETIME': datetime.timedelta(days=31), 'PREFERRED_URL_SCHEME': 'http', 'PRESERVE_CONTEXT_ON_EXCEPTION': None, 'PROPAGATE_EXCEPTIONS': None, 'SECRET_KEY': None, 'SEND_FILE_MAX_AGE_DEFAULT': None, 'SERVER_NAME': None, 'SESSION_COOKIE_DOMAIN': None, 'SESSION_COOKIE_HTTPONLY': True, 'SESSION_COOKIE_NAME': 'session', 'SESSION_COOKIE_PATH': None, 'SESSION_COOKIE_SAMESITE': None, 'SESSION_COOKIE_SECURE': False, 'SESSION_REFRESH_EACH_REQUEST': True, 'TEMPLATES_AUTO_RELOAD': None, 'TESTING': False, 'TRAP_BAD_REQUEST_ERRORS': None, 'TRAP_HTTP_EXCEPTIONS': False, 'USE_X_SENDFILE': False}
Default configuration parameters.

1.2. App configuration 5

https://flask.palletsprojects.com/en/2.0.x/api/#flask.Config
https://flask.palletsprojects.com/en/2.0.x/config/#SERVER_NAME
https://flask.palletsprojects.com/en/2.0.x/config/#DEBUG

Coaster Documentation, Release 0.7.0

dispatch_request() → Union[Response, AnyStr, Dict[str, Any], Generator[AnyStr, None,
None], Tuple[Union[Response, AnyStr, Dict[str, Any], Generator[AnyStr,
None, None]], Union[Headers, Dict[str, Union[str, List[str], Tuple[str, ...]]],
List[Tuple[str, Union[str, List[str], Tuple[str, ...]]]]]], Tuple[Union[Response,
AnyStr, Dict[str, Any], Generator[AnyStr, None, None]], int], Tu-
ple[Union[Response, AnyStr, Dict[str, Any], Generator[AnyStr, None, None]],
int, Union[Headers, Dict[str, Union[str, List[str], Tuple[str, ...]]], List[Tuple[str,
Union[str, List[str], Tuple[str, ...]]]]]], WSGIApplication]

Does the request dispatching. Matches the URL and returns the return value of the view or error handler.
This does not have to be a response object. In order to convert the return value to a proper response object,
call make_response().

Changed in version 0.7: This no longer does the exception handling, this code was moved to the new
full_dispatch_request().

do_teardown_appcontext(exc: Optional[BaseException] = <object object>)→ None
Called right before the application context is popped.

When handling a request, the application context is popped after the request context. See
do_teardown_request().

This calls all functions decorated with teardown_appcontext(). Then the
appcontext_tearing_down signal is sent.

This is called by AppContext.pop().

New in version 0.9.

do_teardown_request(exc: Optional[BaseException] = <object object>)→ None
Called after the request is dispatched and the response is returned, right before the request context is
popped.

This calls all functions decorated with teardown_request(), and Blueprint.
teardown_request() if a blueprint handled the request. Finally, the request_tearing_down
signal is sent.

This is called by RequestContext.pop(), which may be delayed during testing to maintain access
to resources.

Parameters exc – An unhandled exception raised while dispatching the request. Detected from
the current exception information if not passed. Passed to each teardown function.

Changed in version 0.9: Added the exc argument.

ensure_sync(func: Callable)→ Callable
Ensure that the function is synchronous for WSGI workers. Plain def functions are returned as-is. async
def functions are wrapped to run and wait for the response.

Override this method to change how the app runs async views.

New in version 2.0.

env
What environment the app is running in. Flask and extensions may enable behaviors based on the envi-
ronment, such as enabling debug mode. This maps to the ENV config key. This is set by the FLASK_ENV
environment variable and may not behave as expected if set in code.

Do not enable development when deploying in production.

Default: 'production'

6 Chapter 1. Coaster documentation

https://flask.palletsprojects.com/en/2.0.x/api/#flask.ctx.AppContext.pop
https://flask.palletsprojects.com/en/2.0.x/api/#flask.ctx.RequestContext.pop
https://flask.palletsprojects.com/en/2.0.x/config/#ENV

Coaster Documentation, Release 0.7.0

extensions = None
a place where extensions can store application specific state. For example this is where an extension could
store database engines and similar things.

The key must match the name of the extension module. For example in case of a “Flask-Foo” extension in
flask_foo, the key would be 'foo'.

New in version 0.7.

finalize_request(rv: Union[Response, AnyStr, Dict[str, Any], Generator[AnyStr, None, None], Tu-
ple[Union[Response, AnyStr, Dict[str, Any], Generator[AnyStr, None, None]],
Union[Headers, Dict[str, Union[str, List[str], Tuple[str, ...]]], List[Tuple[str,
Union[str, List[str], Tuple[str, ...]]]]]], Tuple[Union[Response, AnyStr, Dict[str,
Any], Generator[AnyStr, None, None]], int], Tuple[Union[Response, AnyStr,
Dict[str, Any], Generator[AnyStr, None, None]], int, Union[Headers, Dict[str,
Union[str, List[str], Tuple[str, ...]]], List[Tuple[str, Union[str, List[str],
Tuple[str, ...]]]]]], WSGIApplication, werkzeug.exceptions.HTTPException],
from_error_handler: bool = False)→ flask.wrappers.Response

Given the return value from a view function this finalizes the request by converting it into a response and
invoking the postprocessing functions. This is invoked for both normal request dispatching as well as error
handlers.

Because this means that it might be called as a result of a failure a special safe mode is available which can
be enabled with the from_error_handler flag. If enabled, failures in response processing will be logged
and otherwise ignored.

Internal

full_dispatch_request()→ flask.wrappers.Response
Dispatches the request and on top of that performs request pre and postprocessing as well as HTTP excep-
tion catching and error handling.

New in version 0.7.

got_first_request
This attribute is set to True if the application started handling the first request.

New in version 0.8.

handle_exception(e: Exception)→ flask.wrappers.Response
Handle an exception that did not have an error handler associated with it, or that was raised from an error
handler. This always causes a 500 InternalServerError.

Always sends the got_request_exception signal.

If propagate_exceptions is True, such as in debug mode, the error will be re-raised so that the
debugger can display it. Otherwise, the original exception is logged, and an InternalServerError
is returned.

If an error handler is registered for InternalServerError or 500, it will be used. For consistency,
the handler will always receive the InternalServerError. The original unhandled exception is
available as e.original_exception.

Changed in version 1.1.0: Always passes the InternalServerError instance to the handler, setting
original_exception to the unhandled error.

Changed in version 1.1.0: after_request functions and other finalization is done even for the default
500 response when there is no handler.

New in version 0.3.

1.2. App configuration 7

Coaster Documentation, Release 0.7.0

handle_http_exception(e: werkzeug.exceptions.HTTPException) →
Union[werkzeug.exceptions.HTTPException, Response, AnyStr,
Dict[str, Any], Generator[AnyStr, None, None], Tuple[Union[Response,
AnyStr, Dict[str, Any], Generator[AnyStr, None, None]],
Union[Headers, Dict[str, Union[str, List[str], Tuple[str, ...]]],
List[Tuple[str, Union[str, List[str], Tuple[str, ...]]]]]], Tu-
ple[Union[Response, AnyStr, Dict[str, Any], Generator[AnyStr,
None, None]], int], Tuple[Union[Response, AnyStr, Dict[str, Any], Gen-
erator[AnyStr, None, None]], int, Union[Headers, Dict[str, Union[str,
List[str], Tuple[str, ...]]], List[Tuple[str, Union[str, List[str], Tuple[str,
...]]]]]], WSGIApplication]

Handles an HTTP exception. By default this will invoke the registered error handlers and fall back to
returning the exception as response.

Changed in version 1.0.3: RoutingException, used internally for actions such as slash redirects dur-
ing routing, is not passed to error handlers.

Changed in version 1.0: Exceptions are looked up by code and by MRO, so HTTPExcpetion subclasses
can be handled with a catch-all handler for the base HTTPException.

New in version 0.3.

handle_url_build_error(error: Exception, endpoint: str, values: dict)→ str
Handle BuildError on url_for().

handle_user_exception(e: Exception) → Union[werkzeug.exceptions.HTTPException, Re-
sponse, AnyStr, Dict[str, Any], Generator[AnyStr, None, None],
Tuple[Union[Response, AnyStr, Dict[str, Any], Generator[AnyStr,
None, None]], Union[Headers, Dict[str, Union[str, List[str], Tu-
ple[str, ...]]], List[Tuple[str, Union[str, List[str], Tuple[str, ...]]]]]], Tu-
ple[Union[Response, AnyStr, Dict[str, Any], Generator[AnyStr, None,
None]], int], Tuple[Union[Response, AnyStr, Dict[str, Any], Gener-
ator[AnyStr, None, None]], int, Union[Headers, Dict[str, Union[str,
List[str], Tuple[str, ...]]], List[Tuple[str, Union[str, List[str], Tuple[str,
...]]]]]], WSGIApplication]

This method is called whenever an exception occurs that should be handled. A special case is
HTTPException which is forwarded to the handle_http_exception() method. This function
will either return a response value or reraise the exception with the same traceback.

Changed in version 1.0: Key errors raised from request data like form show the bad key in debug mode
rather than a generic bad request message.

New in version 0.7.

inject_url_defaults(endpoint: str, values: dict)→ None
Injects the URL defaults for the given endpoint directly into the values dictionary passed. This is used
internally and automatically called on URL building.

New in version 0.7.

instance_path = None
Holds the path to the instance folder.

New in version 0.8.

iter_blueprints()→ ValuesView[Blueprint]
Iterates over all blueprints by the order they were registered.

New in version 0.11.

8 Chapter 1. Coaster documentation

Coaster Documentation, Release 0.7.0

jinja_env
The Jinja environment used to load templates.

The environment is created the first time this property is accessed. Changing jinja_options after that
will have no effect.

jinja_environment
alias of flask.templating.Environment

jinja_options = {}
Options that are passed to the Jinja environment in create_jinja_environment(). Changing these
options after the environment is created (accessing jinja_env) will have no effect.

Changed in version 1.1.0: This is a dict instead of an ImmutableDict to allow easier configuration.

json_decoder
alias of flask.json.JSONDecoder

json_encoder
alias of flask.json.JSONEncoder

log_exception(exc_info: Union[Tuple[type, BaseException, traceback], Tuple[None, None,
None]])→ None

Logs an exception. This is called by handle_exception() if debugging is disabled and right before
the handler is called. The default implementation logs the exception as error on the logger.

New in version 0.8.

logger
A standard Python Logger for the app, with the same name as name.

In debug mode, the logger’s level will be set to DEBUG.

If there are no handlers configured, a default handler will be added. See /logging for more information.

Changed in version 1.1.0: The logger takes the same name as name rather than hard-coding "flask.
app".

Changed in version 1.0.0: Behavior was simplified. The logger is always named "flask.app". The
level is only set during configuration, it doesn’t check app.debug each time. Only one format is used,
not different ones depending on app.debug. No handlers are removed, and a handler is only added if no
handlers are already configured.

New in version 0.3.

make_config(instance_relative: bool = False)→ flask.config.Config
Used to create the config attribute by the Flask constructor. The instance_relative parameter is passed in
from the constructor of Flask (there named instance_relative_config) and indicates if the config should be
relative to the instance path or the root path of the application.

New in version 0.8.

make_default_options_response()→ flask.wrappers.Response
This method is called to create the default OPTIONS response. This can be changed through subclassing
to change the default behavior of OPTIONS responses.

New in version 0.7.

1.2. App configuration 9

https://flask.palletsprojects.com/en/2.0.x/api/#flask.json.JSONDecoder
https://flask.palletsprojects.com/en/2.0.x/api/#flask.json.JSONEncoder
https://docs.python.org/2/library/logging.html#logging.Logger

Coaster Documentation, Release 0.7.0

make_response(rv: Union[Response, AnyStr, Dict[str, Any], Generator[AnyStr, None, None],
Tuple[Union[Response, AnyStr, Dict[str, Any], Generator[AnyStr, None, None]],
Union[Headers, Dict[str, Union[str, List[str], Tuple[str, ...]]], List[Tuple[str,
Union[str, List[str], Tuple[str, ...]]]]]], Tuple[Union[Response, AnyStr, Dict[str,
Any], Generator[AnyStr, None, None]], int], Tuple[Union[Response, AnyStr,
Dict[str, Any], Generator[AnyStr, None, None]], int, Union[Headers, Dict[str,
Union[str, List[str], Tuple[str, ...]]], List[Tuple[str, Union[str, List[str], Tuple[str,
...]]]]]], WSGIApplication])→ flask.wrappers.Response

Convert the return value from a view function to an instance of response_class.

Parameters rv – the return value from the view function. The view function must return a re-
sponse. Returning None, or the view ending without returning, is not allowed. The following
types are allowed for view_rv:

str A response object is created with the string encoded to UTF-8 as the body.

bytes A response object is created with the bytes as the body.

dict A dictionary that will be jsonify’d before being returned.

tuple Either (body, status, headers), (body, status), or (body,
headers), where body is any of the other types allowed here, status is a string
or an integer, and headers is a dictionary or a list of (key, value) tuples. If body
is a response_class instance, status overwrites the exiting value and headers
are extended.

response_class The object is returned unchanged.

other Response class The object is coerced to response_class.

callable() The function is called as a WSGI application. The result is used to create a
response object.

Changed in version 0.9: Previously a tuple was interpreted as the arguments for the response object.

make_shell_context()→ dict
Returns the shell context for an interactive shell for this application. This runs all the registered shell
context processors.

New in version 0.11.

name
The name of the application. This is usually the import name with the difference that it’s guessed from the
run file if the import name is main. This name is used as a display name when Flask needs the name of the
application. It can be set and overridden to change the value.

New in version 0.8.

open_instance_resource(resource: str, mode: str = ’rb’)→ IO[AnyStr]
Opens a resource from the application’s instance folder (instance_path). Otherwise works like
open_resource(). Instance resources can also be opened for writing.

Parameters

• resource – the name of the resource. To access resources within subfolders use forward
slashes as separator.

• mode – resource file opening mode, default is ‘rb’.

permanent_session_lifetime
A timedelta which is used to set the expiration date of a permanent session. The default is 31 days
which makes a permanent session survive for roughly one month.

10 Chapter 1. Coaster documentation

https://docs.python.org/2/library/functions.html#callable
https://docs.python.org/2/library/datetime.html#datetime.timedelta

Coaster Documentation, Release 0.7.0

This attribute can also be configured from the config with the PERMANENT_SESSION_LIFETIME con-
figuration key. Defaults to timedelta(days=31)

preprocess_request() → Union[Response, AnyStr, Dict[str, Any], Generator[AnyStr, None,
None], Tuple[Union[Response, AnyStr, Dict[str, Any], Generator[AnyStr,
None, None]], Union[Headers, Dict[str, Union[str, List[str], Tuple[str, ...]]],
List[Tuple[str, Union[str, List[str], Tuple[str, ...]]]]]], Tuple[Union[Response,
AnyStr, Dict[str, Any], Generator[AnyStr, None, None]], int], Tu-
ple[Union[Response, AnyStr, Dict[str, Any], Generator[AnyStr, None,
None]], int, Union[Headers, Dict[str, Union[str, List[str], Tuple[str, ...]]],
List[Tuple[str, Union[str, List[str], Tuple[str, ...]]]]]], WSGIApplication,
None]

Called before the request is dispatched. Calls url_value_preprocessors registered with the app
and the current blueprint (if any). Then calls before_request_funcs registered with the app and the
blueprint.

If any before_request() handler returns a non-None value, the value is handled as if it was the return
value from the view, and further request handling is stopped.

preserve_context_on_exception
Returns the value of the PRESERVE_CONTEXT_ON_EXCEPTION configuration value in case it’s set,
otherwise a sensible default is returned.

New in version 0.7.

process_response(response: flask.wrappers.Response)→ flask.wrappers.Response
Can be overridden in order to modify the response object before it’s sent to the WSGI server. By default
this will call all the after_request() decorated functions.

Changed in version 0.5: As of Flask 0.5 the functions registered for after request execution are called in
reverse order of registration.

Parameters response – a response_class object.

Returns a new response object or the same, has to be an instance of response_class.

propagate_exceptions
Returns the value of the PROPAGATE_EXCEPTIONS configuration value in case it’s set, otherwise a
sensible default is returned.

New in version 0.7.

raise_routing_exception(request: flask.wrappers.Request)→ te.NoReturn
Exceptions that are recording during routing are reraised with this method. During debug we are not
reraising redirect requests for non GET, HEAD, or OPTIONS requests and we’re raising a different error
instead to help debug situations.

Internal

register_blueprint(blueprint: Blueprint, **options)→ None
Register a Blueprint on the application. Keyword arguments passed to this method will override the
defaults set on the blueprint.

Calls the blueprint’s register() method after recording the blueprint in the application’s
blueprints.

Parameters

• blueprint – The blueprint to register.

• url_prefix – Blueprint routes will be prefixed with this.

• subdomain – Blueprint routes will match on this subdomain.

1.2. App configuration 11

https://flask.palletsprojects.com/en/2.0.x/api/#flask.Blueprint
https://flask.palletsprojects.com/en/2.0.x/api/#flask.Blueprint.register

Coaster Documentation, Release 0.7.0

• url_defaults – Blueprint routes will use these default values for view arguments.

• options – Additional keyword arguments are passed to BlueprintSetupState.
They can be accessed in record() callbacks.

Changed in version 2.0.1: The name option can be used to change the (pre-dotted) name the blueprint
is registered with. This allows the same blueprint to be registered multiple times with unique names for
url_for.

New in version 0.7.

request_class
alias of flask.wrappers.Request

request_context(environ: dict)→ flask.ctx.RequestContext
Create a RequestContext representing a WSGI environment. Use a with block to push the context,
which will make request point at this request.

See /reqcontext.

Typically you should not call this from your own code. A request context is automatically pushed by the
wsgi_app() when handling a request. Use test_request_context() to create an environment
and context instead of this method.

Parameters environ – a WSGI environment

response_class
alias of flask.wrappers.Response

run(host: Optional[str] = None, port: Optional[int] = None, debug: Optional[bool] = None,
load_dotenv: bool = True, **options)→ None
Runs the application on a local development server.

Do not use run() in a production setting. It is not intended to meet security and performance requirements
for a production server. Instead, see /deploying/index for WSGI server recommendations.

If the debug flag is set the server will automatically reload for code changes and show a debugger in case
an exception happened.

If you want to run the application in debug mode, but disable the code execution on the interactive debug-
ger, you can pass use_evalex=False as parameter. This will keep the debugger’s traceback screen
active, but disable code execution.

It is not recommended to use this function for development with automatic reloading as this is badly
supported. Instead you should be using the flask command line script’s run support.

Keep in Mind

Flask will suppress any server error with a generic error page unless it is in debug mode. As such to enable
just the interactive debugger without the code reloading, you have to invoke run() with debug=True
and use_reloader=False. Setting use_debugger to True without being in debug mode won’t
catch any exceptions because there won’t be any to catch.

Parameters

• host – the hostname to listen on. Set this to '0.0.0.0' to have the server available
externally as well. Defaults to '127.0.0.1' or the host in the SERVER_NAME config
variable if present.

• port – the port of the webserver. Defaults to 5000 or the port defined in the
SERVER_NAME config variable if present.

12 Chapter 1. Coaster documentation

https://flask.palletsprojects.com/en/2.0.x/api/#flask.blueprints.BlueprintSetupState
https://flask.palletsprojects.com/en/2.0.x/api/#flask.Blueprint.record
https://flask.palletsprojects.com/en/2.0.x/api/#flask.Request
https://flask.palletsprojects.com/en/2.0.x/api/#flask.ctx.RequestContext
https://flask.palletsprojects.com/en/2.0.x/api/#flask.Response

Coaster Documentation, Release 0.7.0

• debug – if given, enable or disable debug mode. See debug.

• load_dotenv – Load the nearest .env and .flaskenv files to set environment vari-
ables. Will also change the working directory to the directory containing the first file
found.

• options – the options to be forwarded to the underlying Werkzeug server. See
werkzeug.serving.run_simple() for more information.

Changed in version 1.0: If installed, python-dotenv will be used to load environment variables from .env
and .flaskenv files.

If set, the FLASK_ENV and FLASK_DEBUG environment variables will override env and debug.

Threaded mode is enabled by default.

Changed in version 0.10: The default port is now picked from the SERVER_NAME variable.

secret_key
If a secret key is set, cryptographic components can use this to sign cookies and other things. Set this to a
complex random value when you want to use the secure cookie for instance.

This attribute can also be configured from the config with the SECRET_KEY configuration key. Defaults
to None.

select_jinja_autoescape(filename: str)→ bool
Returns True if autoescaping should be active for the given template name. If no template name is given,
returns True.

New in version 0.5.

send_file_max_age_default
A timedelta or number of seconds which is used as the default max_age for send_file(). The
default is None, which tells the browser to use conditional requests instead of a timed cache.

Configured with the SEND_FILE_MAX_AGE_DEFAULT configuration key.

Changed in version 2.0: Defaults to None instead of 12 hours.

session_cookie_name
The secure cookie uses this for the name of the session cookie.

This attribute can also be configured from the config with the SESSION_COOKIE_NAME configuration
key. Defaults to 'session'

session_interface = <flask.sessions.SecureCookieSessionInterface object>
the session interface to use. By default an instance of SecureCookieSessionInterface is used
here.

New in version 0.8.

shell_context_processor(f: Callable)→ Callable
Registers a shell context processor function.

New in version 0.11.

shell_context_processors = None
A list of shell context processor functions that should be run when a shell context is created.

New in version 0.11.

should_ignore_error(error: Optional[BaseException])→ bool
This is called to figure out if an error should be ignored or not as far as the teardown system is concerned.
If this function returns True then the teardown handlers will not be passed the error.

1.2. App configuration 13

https://flask.palletsprojects.com/en/2.0.x/config/#SECRET_KEY
https://docs.python.org/2/library/datetime.html#datetime.timedelta
https://flask.palletsprojects.com/en/2.0.x/config/#SEND_FILE_MAX_AGE_DEFAULT
https://flask.palletsprojects.com/en/2.0.x/api/#flask.sessions.SecureCookieSessionInterface

Coaster Documentation, Release 0.7.0

New in version 0.10.

teardown_appcontext(f: Callable[[Optional[BaseException]], Response]) →
Callable[[Optional[BaseException]], flask.wrappers.Response]

Registers a function to be called when the application context ends. These functions are typically also
called when the request context is popped.

Example:

ctx = app.app_context()
ctx.push()
...
ctx.pop()

When ctx.pop() is executed in the above example, the teardown functions are called just before the app
context moves from the stack of active contexts. This becomes relevant if you are using such constructs in
tests.

Since a request context typically also manages an application context it would also be called when you
pop a request context.

When a teardown function was called because of an unhandled exception it will be passed an error object.
If an errorhandler() is registered, it will handle the exception and the teardown will not receive it.

The return values of teardown functions are ignored.

New in version 0.9.

teardown_appcontext_funcs = None
A list of functions that are called when the application context is destroyed. Since the application context
is also torn down if the request ends this is the place to store code that disconnects from databases.

New in version 0.9.

template_filter(name: Optional[str] = None)→ Callable[[Callable[[Any], str]], Callable[[Any],
str]]

A decorator that is used to register custom template filter. You can specify a name for the filter, otherwise
the function name will be used. Example:

@app.template_filter()
def reverse(s):

return s[::-1]

Parameters name – the optional name of the filter, otherwise the function name will be used.

template_global(name: Optional[str] = None)→ Callable[[Callable[[], Any]], Callable[[], Any]]
A decorator that is used to register a custom template global function. You can specify a name for the
global function, otherwise the function name will be used. Example:

@app.template_global()
def double(n):

return 2 * n

New in version 0.10.

Parameters name – the optional name of the global function, otherwise the function name will
be used.

14 Chapter 1. Coaster documentation

Coaster Documentation, Release 0.7.0

template_test(name: Optional[str] = None) → Callable[[Callable[[Any], bool]], Callable[[Any],
bool]]

A decorator that is used to register custom template test. You can specify a name for the test, otherwise
the function name will be used. Example:

@app.template_test()
def is_prime(n):

if n == 2:
return True

for i in range(2, int(math.ceil(math.sqrt(n))) + 1):
if n % i == 0:

return False
return True

New in version 0.10.

Parameters name – the optional name of the test, otherwise the function name will be used.

templates_auto_reload
Reload templates when they are changed. Used by create_jinja_environment().

This attribute can be configured with TEMPLATES_AUTO_RELOAD. If not set, it will be enabled in debug
mode.

New in version 1.0: This property was added but the underlying config and behavior already existed.

test_cli_runner(**kwargs)→ FlaskCliRunner
Create a CLI runner for testing CLI commands. See Testing CLI Commands.

Returns an instance of test_cli_runner_class, by default FlaskCliRunner. The Flask app
object is passed as the first argument.

New in version 1.0.

test_cli_runner_class = None
The CliRunner subclass, by default FlaskCliRunner that is used by test_cli_runner(). Its
__init__ method should take a Flask app object as the first argument.

New in version 1.0.

test_client(use_cookies: bool = True, **kwargs)→ FlaskClient
Creates a test client for this application. For information about unit testing head over to /testing.

Note that if you are testing for assertions or exceptions in your application code, you must set app.
testing = True in order for the exceptions to propagate to the test client. Otherwise, the exception
will be handled by the application (not visible to the test client) and the only indication of an AssertionError
or other exception will be a 500 status code response to the test client. See the testing attribute. For
example:

app.testing = True
client = app.test_client()

The test client can be used in a with block to defer the closing down of the context until the end of the
with block. This is useful if you want to access the context locals for testing:

with app.test_client() as c:
rv = c.get('/?vodka=42')
assert request.args['vodka'] == '42'

Additionally, you may pass optional keyword arguments that will then be passed to the application’s
test_client_class constructor. For example:

1.2. App configuration 15

https://flask.palletsprojects.com/en/2.0.x/config/#TEMPLATES_AUTO_RELOAD
https://flask.palletsprojects.com/en/2.0.x/testing/#testing-cli
https://flask.palletsprojects.com/en/2.0.x/api/#flask.testing.FlaskCliRunner
https://flask.palletsprojects.com/en/2.0.x/api/#flask.testing.FlaskCliRunner

Coaster Documentation, Release 0.7.0

from flask.testing import FlaskClient

class CustomClient(FlaskClient):
def __init__(self, *args, **kwargs):

self._authentication = kwargs.pop("authentication")
super(CustomClient,self).__init__(*args, **kwargs)

app.test_client_class = CustomClient
client = app.test_client(authentication='Basic')

See FlaskClient for more information.

Changed in version 0.4: added support for with block usage for the client.

New in version 0.7: The use_cookies parameter was added as well as the ability to override the client to
be used by setting the test_client_class attribute.

Changed in version 0.11: Added **kwargs to support passing additional keyword arguments to the con-
structor of test_client_class.

test_client_class = None
the test client that is used with when test_client is used.

New in version 0.7.

test_request_context(*args, **kwargs)→ flask.ctx.RequestContext
Create a RequestContext for a WSGI environment created from the given values. This is mostly
useful during testing, where you may want to run a function that uses request data without dispatching a
full request.

See /reqcontext.

Use a with block to push the context, which will make request point at the request for the created
environment.

with test_request_context(...):
generate_report()

When using the shell, it may be easier to push and pop the context manually to avoid indentation.

ctx = app.test_request_context(...)
ctx.push()
...
ctx.pop()

Takes the same arguments as Werkzeug’s EnvironBuilder, with some defaults from the application.
See the linked Werkzeug docs for most of the available arguments. Flask-specific behavior is listed here.

Parameters

• path – URL path being requested.

• base_url – Base URL where the app is being served, which path is relative to. If
not given, built from PREFERRED_URL_SCHEME, subdomain, SERVER_NAME, and
APPLICATION_ROOT.

• subdomain – Subdomain name to append to SERVER_NAME.

• url_scheme – Scheme to use instead of PREFERRED_URL_SCHEME.

• data – The request body, either as a string or a dict of form keys and values.

16 Chapter 1. Coaster documentation

https://flask.palletsprojects.com/en/2.0.x/api/#flask.testing.FlaskClient
https://flask.palletsprojects.com/en/2.0.x/api/#flask.ctx.RequestContext
https://flask.palletsprojects.com/en/2.0.x/config/#PREFERRED_URL_SCHEME
https://flask.palletsprojects.com/en/2.0.x/config/#SERVER_NAME
https://flask.palletsprojects.com/en/2.0.x/config/#APPLICATION_ROOT
https://flask.palletsprojects.com/en/2.0.x/config/#SERVER_NAME
https://flask.palletsprojects.com/en/2.0.x/config/#PREFERRED_URL_SCHEME

Coaster Documentation, Release 0.7.0

• json – If given, this is serialized as JSON and passed as data. Also defaults
content_type to application/json.

• args – other positional arguments passed to EnvironBuilder.

• kwargs – other keyword arguments passed to EnvironBuilder.

testing
The testing flag. Set this to True to enable the test mode of Flask extensions (and in the future probably
also Flask itself). For example this might activate test helpers that have an additional runtime cost which
should not be enabled by default.

If this is enabled and PROPAGATE_EXCEPTIONS is not changed from the default it’s implicitly enabled.

This attribute can also be configured from the config with the TESTING configuration key. Defaults to
False.

trap_http_exception(e: Exception)→ bool
Checks if an HTTP exception should be trapped or not. By default this will return False for all exceptions
except for a bad request key error if TRAP_BAD_REQUEST_ERRORS is set to True. It also returns True
if TRAP_HTTP_EXCEPTIONS is set to True.

This is called for all HTTP exceptions raised by a view function. If it returns True for any exception the
error handler for this exception is not called and it shows up as regular exception in the traceback. This is
helpful for debugging implicitly raised HTTP exceptions.

Changed in version 1.0: Bad request errors are not trapped by default in debug mode.

New in version 0.8.

try_trigger_before_first_request_functions()→ None
Called before each request and will ensure that it triggers the before_first_request_funcs and
only exactly once per application instance (which means process usually).

Internal

update_template_context(context: dict)→ None
Update the template context with some commonly used variables. This injects request, session, config and
g into the template context as well as everything template context processors want to inject. Note that the
as of Flask 0.6, the original values in the context will not be overridden if a context processor decides to
return a value with the same key.

Parameters context – the context as a dictionary that is updated in place to add extra vari-
ables.

url_build_error_handlers = None
A list of functions that are called when url_for() raises a BuildError. Each function registered
here is called with error, endpoint and values. If a function returns None or raises a BuildError the
next function is tried.

New in version 0.9.

url_map = None
The Map for this instance. You can use this to change the routing converters after the class was created but
before any routes are connected. Example:

from werkzeug.routing import BaseConverter

class ListConverter(BaseConverter):
def to_python(self, value):

return value.split(',')
def to_url(self, values):

(continues on next page)

1.2. App configuration 17

Coaster Documentation, Release 0.7.0

(continued from previous page)

return ','.join(super(ListConverter, self).to_url(value)
for value in values)

app = Flask(__name__)
app.url_map.converters['list'] = ListConverter

url_map_class
alias of werkzeug.routing.Map

url_rule_class
alias of werkzeug.routing.Rule

use_x_sendfile
Enable this if you want to use the X-Sendfile feature. Keep in mind that the server has to support this. This
only affects files sent with the send_file() method.

New in version 0.2.

This attribute can also be configured from the config with the USE_X_SENDFILE configuration key.
Defaults to False.

wsgi_app(environ: dict, start_response: Callable)→ Any
The actual WSGI application. This is not implemented in __call__() so that middlewares can be
applied without losing a reference to the app object. Instead of doing this:

app = MyMiddleware(app)

It’s a better idea to do this instead:

app.wsgi_app = MyMiddleware(app.wsgi_app)

Then you still have the original application object around and can continue to call methods on it.

Changed in version 0.7: Teardown events for the request and app contexts are called even if an unhandled
error occurs. Other events may not be called depending on when an error occurs during dispatch. See
Callbacks and Errors.

Parameters

• environ – A WSGI environment.

• start_response – A callable accepting a status code, a list of headers, and an optional
exception context to start the response.

coaster.app.init_app(app, init_logging=True)
Configure an app depending on the environment. Loads settings from a file named settings.py in
the instance folder, followed by additional settings from one of development.py, production.py or
testing.py. Typical usage:

from flask import Flask
import coaster.app

app = Flask(__name__, instance_relative_config=True)
coaster.app.init_app(app) # Guess environment automatically

init_app() also configures logging by calling coaster.logger.init_app().

Parameters

• app – App to be configured

18 Chapter 1. Coaster documentation

https://flask.palletsprojects.com/en/2.0.x/reqcontext/#callbacks-and-errors

Coaster Documentation, Release 0.7.0

• init_logging (bool) – Call coaster.logger.init_app (default True)

1.3 Logger

Coaster can help your application log errors at run-time. Initialize with coaster.logger.init_app(). If you
use coaster.app.init_app(), this is done automatically for you.

class coaster.logger.FilteredValueIndicator
Represent a filtered value.

class coaster.logger.LocalVarFormatter(*args, **kwargs)
Log the contents of local variables in the stack frame.

format(record)
Format the specified record as text.

Overrides logging.Formatter.format() to remove cache of record.exc_text unless it was
produced by this formatter.

formatException(ei)→ str
Render a stack trace with local variables in each stack frame.

class coaster.logger.RepeatValueIndicator(key)
Represent a repeating value.

class coaster.logger.SlackHandler(app_name, webhooks)
Custom logging handler to post error reports to Slack.

emit(record)
Emit an event.

class coaster.logger.TelegramHandler(app_name, chatid, apikey)
Custom logging handler to report errors to a Telegram chat.

emit(record)
Emit an event.

coaster.logger.configure(app)
Enable logging for an app using LocalVarFormatter.

Requires the app to be configured and checks for the following configuration parameters. All are optional:

• LOGFILE: Name of the file to log to (default error.log)

• LOGFILE_LEVEL: Logging level to use for file logger (default WARNING)

• ADMINS: List of email addresses of admins who will be mailed error reports

• MAIL_DEFAULT_SENDER: From address of email. Can be an address or a tuple with name and ad-
dress

• MAIL_SERVER: SMTP server to send with (default localhost)

• MAIL_USERNAME and MAIL_PASSWORD: SMTP credentials, if required

• SLACK_LOGGING_WEBHOOKS: If present, will send error logs to all specified Slack webhooks

• TELEGRAM_ERROR_CHATID and TELEGRAM_ERROR_APIKEY: If present, will use the specified
API key to post a message to the specified chat

Format for SLACK_LOGGING_WEBHOOKS:

1.3. Logger 19

https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/logging.html#logging.Formatter.format

Coaster Documentation, Release 0.7.0

SLACK_LOGGING_WEBHOOKS = [{
'levelnames': ['WARNING', 'ERROR', 'CRITICAL'],
'url': 'https://hooks.slack.com/...'
}]

coaster.logger.filtered_value(key, value)
Find and mask sensitive values based on key names.

coaster.logger.init_app(app)
Enable logging for an app using LocalVarFormatter.

Requires the app to be configured and checks for the following configuration parameters. All are optional:

• LOGFILE: Name of the file to log to (default error.log)

• LOGFILE_LEVEL: Logging level to use for file logger (default WARNING)

• ADMINS: List of email addresses of admins who will be mailed error reports

• MAIL_DEFAULT_SENDER: From address of email. Can be an address or a tuple with name and ad-
dress

• MAIL_SERVER: SMTP server to send with (default localhost)

• MAIL_USERNAME and MAIL_PASSWORD: SMTP credentials, if required

• SLACK_LOGGING_WEBHOOKS: If present, will send error logs to all specified Slack webhooks

• TELEGRAM_ERROR_CHATID and TELEGRAM_ERROR_APIKEY: If present, will use the specified
API key to post a message to the specified chat

Format for SLACK_LOGGING_WEBHOOKS:

SLACK_LOGGING_WEBHOOKS = [{
'levelnames': ['WARNING', 'ERROR', 'CRITICAL'],
'url': 'https://hooks.slack.com/...'
}]

coaster.logger.pprint_with_indent(dictlike, outfile, indent=4)
Filter values and pprint with indent to create a Markdown code block.

1.4 Assets

Coaster provides a simple asset management system for semantically versioned assets using the semantic_version and
webassets libraries. Many popular libraries such as jQuery are not semantically versioned, so you will have to be
careful about assumptions you make around them.

class coaster.assets.SimpleSpec(expression)

class coaster.assets.VersionedAssets
Semantic-versioned assets. To use, initialize a container for your assets:

from coaster.assets import VersionedAssets, Version
assets = VersionedAssets()

And then populate it with your assets. The simplest way is by specifying the asset name, version number, and
path to the file (within your static folder):

assets['jquery.js'][Version('1.8.3')] = 'js/jquery-1.8.3.js'

20 Chapter 1. Coaster documentation

http://python-semanticversion.readthedocs.org/en/latest/
http://elsdoerfer.name/docs/webassets/

Coaster Documentation, Release 0.7.0

You can also specify one or more requirements for an asset by supplying a list or tuple of requirements followed
by the actual asset:

assets['jquery.form.js'][Version('2.96.0')] = (
'jquery.js', 'js/jquery.form-2.96.js')

You may have an asset that provides replacement functionality for another asset:

assets['zepto.js'][Version('1.0.0-rc1')] = {
'provides': 'jquery.js',
'bundle': 'js/zepto-1.0rc1.js',
}

Assets specified as a dictionary can have three keys:

Parameters

• provides (string or list) – Assets provided by this asset

• requires (string or list) – Assets required by this asset (with optional version
specifications)

• bundle (string or Bundle) – The asset itself

To request an asset:

assets.require('jquery.js', 'jquery.form.js==2.96.0', ...)

This returns a webassets Bundle of the requested assets and their dependencies.

You can also ask for certain assets to not be included even if required if, for example, you are loading them from
elsewhere such as a CDN. Prefix the asset name with ‘!’:

assets.require('!jquery.js', 'jquery.form.js', ...)

To use these assets in a Flask app, register the assets with an environment:

from flask_assets import Environment
appassets = Environment(app)
appassets.register('js_all', assets.require('jquery.js', ...))

And include them in your master template:

{% assets "js_all" -%}
<script type="text/javascript" src="{{ ASSET_URL }}"></script>

{%- endassets -%}

require(*namespecs)
Return a bundle of the requested assets and their dependencies.

exception coaster.assets.AssetNotFound
No asset with this name

1.5 Utilities

These functions are not dependent on Flask. They implement common patterns in Flask-based applications.

1.5. Utilities 21

Coaster Documentation, Release 0.7.0

1.6 Miscellaneous utilities

coaster.utils.misc.base_domain_matches(d1, d2)
Check if two domains have the same base domain, using the Public Suffix List.

>>> base_domain_matches('https://hasjob.co', 'hasjob.co')
True
>>> base_domain_matches('hasgeek.hasjob.co', 'hasjob.co')
True
>>> base_domain_matches('hasgeek.com', 'hasjob.co')
False
>>> base_domain_matches('static.hasgeek.co.in', 'hasgeek.com')
False
>>> base_domain_matches('static.hasgeek.co.in', 'hasgeek.co.in')
True
>>> base_domain_matches('example@example.com', 'example.com')
True

coaster.utils.misc.buid()
Legacy name

coaster.utils.misc.buid2uuid(value)
Legacy name

coaster.utils.misc.domain_namespace_match(domain, namespace)
Checks if namespace is related to the domain because the base domain matches.

>>> domain_namespace_match('hasgeek.com', 'com.hasgeek')
True
>>> domain_namespace_match('funnel.hasgeek.com', 'com.hasgeek.funnel')
True
>>> domain_namespace_match('app.hasgeek.com', 'com.hasgeek.peopleflow')
True
>>> domain_namespace_match('app.hasgeek.in', 'com.hasgeek.peopleflow')
False
>>> domain_namespace_match('peopleflow.local', 'local.peopleflow')
True

coaster.utils.misc.format_currency(value, decimals=2)
Return a number suitably formatted for display as currency, with thousands separated by commas and up to two
decimal points.

>>> format_currency(1000)
'1,000'
>>> format_currency(100)
'100'
>>> format_currency(999.95)
'999.95'
>>> format_currency(99.95)
'99.95'
>>> format_currency(100000)
'100,000'
>>> format_currency(1000.00)
'1,000'
>>> format_currency(1000.41)
'1,000.41'
>>> format_currency(23.21, decimals=3)

(continues on next page)

22 Chapter 1. Coaster documentation

Coaster Documentation, Release 0.7.0

(continued from previous page)

'23.210'
>>> format_currency(1000, decimals=3)
'1,000'
>>> format_currency(123456789.123456789)
'123,456,789.12'

coaster.utils.misc.get_email_domain(emailaddr)
Return the domain component of an email address. Returns None if the provided string cannot be parsed as an
email address.

>>> get_email_domain('test@example.com')
'example.com'
>>> get_email_domain('test+trailing@example.com')
'example.com'
>>> get_email_domain('Example Address <test@example.com>')
'example.com'
>>> get_email_domain('foobar')
>>> get_email_domain('foobar@')
>>> get_email_domain('@foobar')

coaster.utils.misc.getbool(value)
Returns a boolean from any of a range of values. Returns None for unrecognized values. Numbers other than 0
and 1 are considered unrecognized.

>>> getbool(True)
True
>>> getbool(1)
True
>>> getbool('1')
True
>>> getbool('t')
True
>>> getbool(2)
>>> getbool(0)
False
>>> getbool(False)
False
>>> getbool('n')
False

coaster.utils.misc.is_collection(item)
Returns True if the item is a collection class: list, tuple, set, frozenset or any other class that resembles one of
these (using abstract base classes).

>>> is_collection(0)
False
>>> is_collection(0.1)
False
>>> is_collection('')
False
>>> is_collection(b'')
False
>>> is_collection({})
False
>>> is_collection({}.keys())
True

(continues on next page)

1.6. Miscellaneous utilities 23

Coaster Documentation, Release 0.7.0

(continued from previous page)

>>> is_collection([])
True
>>> is_collection(())
True
>>> is_collection(set())
True
>>> is_collection(frozenset())
True
>>> from coaster.utils import InspectableSet
>>> is_collection(InspectableSet({1, 2}))
True

coaster.utils.misc.make_name(text, delim=’-’, maxlength=50, checkused=None, counter=2)
Generate an ASCII name slug. If a checkused filter is provided, it will be called with the candidate. If it returns
True, make_name will add counter numbers starting from 2 until a suitable candidate is found.

Parameters

• delim (string) – Delimiter between words, default ‘-’

• maxlength (int) – Maximum length of name, default 50

• checkused – Function to check if a generated name is available for use

• counter (int) – Starting position for name counter

>>> make_name('This is a title')
'this-is-a-title'
>>> make_name('Invalid URL/slug here')
'invalid-url-slug-here'
>>> make_name('this.that')
'this-that'
>>> make_name('this:that')
'this-that'
>>> make_name("How 'bout this?")
'how-bout-this'
>>> make_name("How’s that?")
'hows-that'
>>> make_name('K & D')
'k-d'
>>> make_name('billion+ pageviews')
'billion-pageviews'
>>> make_name(' slug!')
'hindii-slug'
>>> make_name('Talk in español, Kiswahili, and too.', maxlength=250)
'talk-in-espanol-kiswahili-guang-zhou-hua-and-asmiiyaa-too'
>>> make_name('__name__', delim='_')
'name'
>>> make_name('how_about_this', delim='_')
'how_about_this'
>>> make_name('and-that', delim='_')
'and_that'
>>> make_name('Umlauts in Mötörhead')
'umlauts-in-motorhead'
>>> make_name('Candidate', checkused=lambda c: c in ['candidate'])
'candidate2'
>>> make_name('Candidate', checkused=lambda c: c in ['candidate'], counter=1)
'candidate1'

(continues on next page)

24 Chapter 1. Coaster documentation

https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#int

Coaster Documentation, Release 0.7.0

(continued from previous page)

>>> make_name('Candidate',
... checkused=lambda c: c in ['candidate', 'candidate1', 'candidate2'],
→˓counter=1)
'candidate3'
>>> make_name('Long title, but snipped', maxlength=20)
'long-title-but-snipp'
>>> len(make_name('Long title, but snipped', maxlength=20))
20
>>> make_name('Long candidate', maxlength=10,
... checkused=lambda c: c in ['long-candi', 'long-cand1'])
'long-cand2'
>>> make_name('Lnkran')
'lankaran'
>>> make_name('example@example.com')
'example-example-com'
>>> make_name('trailing-delimiter', maxlength=10)
'trailing-d'
>>> make_name('trailing-delimiter', maxlength=9)
'trailing'
>>> make_name('''test this
... newline''')
'test-this-newline'
>>> make_name("testing an emoji")
'testing-an-emoji'
>>> make_name('''testing\t\nmore\r\nslashes''')
'testing-more-slashes'
>>> make_name('What if a HTML <tag/>')
'what-if-a-html-tag'
>>> make_name('These are equivalent to \x01 through \x1A')
'these-are-equivalent-to-through'
>>> make_name("feedback;\x00")
'feedback'

coaster.utils.misc.md5sum(data)
Return md5sum of data as a 32-character string.

>>> md5sum('random text')
'd9b9bec3f4cc5482e7c5ef43143e563a'
>>> md5sum('random text')
'd9b9bec3f4cc5482e7c5ef43143e563a'
>>> len(md5sum('random text'))
32

coaster.utils.misc.namespace_from_url(url)
Construct a dotted namespace string from a URL.

coaster.utils.misc.nary_op(f, doc=None)
Decorator to convert a binary operator into a chained n-ary operator.

coaster.utils.misc.newpin(digits=4)
Return a random numeric string with the specified number of digits, default 4.

>>> len(newpin())
4
>>> len(newpin(5))
5
>>> newpin().isdigit()

(continues on next page)

1.6. Miscellaneous utilities 25

Coaster Documentation, Release 0.7.0

(continued from previous page)

True

coaster.utils.misc.newsecret()
Make a secret key for non-cryptographic use cases like email account verification. Mashes two UUID4s into a
Base58 rendering, between 42 and 44 characters long. The resulting string consists of only ASCII strings and
so will typically not be word-wrapped by email clients.

>>> len(newsecret()) in (42, 43, 44)
True
>>> newsecret() == newsecret()
False

coaster.utils.misc.nullint(value)
Return int(value) if bool(value) is not False. Return None otherwise. Useful for coercing optional values to an
integer.

>>> nullint('10')
10
>>> nullint('') is None
True

coaster.utils.misc.nullstr(value)
Return unicode(value) if bool(value) is not False. Return None otherwise. Useful for coercing optional values
to a string.

>>> nullstr(10) == '10'
True
>>> nullstr('') is None
True

coaster.utils.misc.require_one_of(_return=False, **kwargs)
Validator that raises TypeError unless one and only one parameter is not None. Use this inside functions
that take multiple parameters, but allow only one of them to be specified:

def my_func(this=None, that=None, other=None):
Require one and only one of `this` or `that`
require_one_of(this=this, that=that)

If we need to know which parameter was passed in:
param, value = require_one_of(True, this=this, that=that)

Carry on with function logic
pass

Parameters

• _return – Return the matching parameter

• kwargs – Parameters, of which one and only one is mandatory

Returns If _return, matching parameter name and value

Return type tuple

Raises TypeError – If the count of parameters that aren’t None is not 1

26 Chapter 1. Coaster documentation

Coaster Documentation, Release 0.7.0

coaster.utils.misc.unicode_http_header(value)
Convert an ASCII HTTP header string into a unicode string with the appropriate encoding applied. Expects
headers to be RFC 2047 compliant.

>>> unicode_http_header('=?iso-8859-1?q?p=F6stal?=') == 'p\xf6stal'
True
>>> unicode_http_header(b'=?iso-8859-1?q?p=F6stal?=') == 'p\xf6stal'
True
>>> unicode_http_header('p\xf6stal') == 'p\xf6stal'
True

coaster.utils.misc.uuid1mc()
Return a UUID1 with a random multicast MAC id.

>>> isinstance(uuid1mc(), uuid.UUID)
True

coaster.utils.misc.uuid1mc_from_datetime(dt)
Return a UUID1 with a random multicast MAC id and with a timestamp matching the given datetime object or
timestamp value.

Warning: This function does not consider the timezone, and is not guaranteed to return a unique UUID.
Use under controlled conditions only.

>>> dt = datetime.now()
>>> u1 = uuid1mc()
>>> u2 = uuid1mc_from_datetime(dt)
>>> # Both timestamps should be very close to each other but not an exact match
>>> u1.time > u2.time
True
>>> u1.time - u2.time < 5000
True
>>> d2 = datetime.fromtimestamp((u2.time - 0x01b21dd213814000) * 100 / 1e9)
>>> d2 == dt
True

coaster.utils.misc.uuid2buid(value)
Legacy name

coaster.utils.misc.uuid_b58()
Return a UUID4 encoded in base58 and rendered as a string. Will be 21 or 22 characters long

>>> len(uuid_b58()) in (21, 22)
True
>>> uuid_b58() == uuid_b58()
False
>>> isinstance(uuid_b58(), str)
True

coaster.utils.misc.uuid_b64()
Return a new random id that is exactly 22 characters long, by encoding a UUID4 in URL-safe Base64. See
http://en.wikipedia.org/wiki/Base64#Variants_summary_table

>>> len(buid())
22

(continues on next page)

1.6. Miscellaneous utilities 27

http://en.wikipedia.org/wiki/Base64#Variants_summary_table

Coaster Documentation, Release 0.7.0

(continued from previous page)

>>> buid() == buid()
False
>>> isinstance(buid(), str)
True

coaster.utils.misc.uuid_from_base58(value)
Convert a Base58-encoded UUID back into a UUID object

>>> uuid_from_base58('7KAmj837MyuJWUYPwtqAfz')
UUID('33203dd2-f2ef-422f-aeb0-058d6f5f7089')
>>> # The following UUID to Base58 encoding is from NPM uuid-base58, for
→˓comparison
>>> uuid_from_base58('TedLUruK7MosG1Z88urTkk')
UUID('d7ce8475-e77c-43b0-9dde-56b428981999')

coaster.utils.misc.uuid_from_base64(value)
Convert a 22-char URL-safe Base64 string (BUID) to a UUID object

>>> uuid_from_base64('MyA90vLvQi-usAWNb19wiQ')
UUID('33203dd2-f2ef-422f-aeb0-058d6f5f7089')

coaster.utils.misc.uuid_to_base58(value)
Render a UUID in Base58 and return as a string

>>> uuid_to_base58(uuid.UUID('33203dd2-f2ef-422f-aeb0-058d6f5f7089'))
'7KAmj837MyuJWUYPwtqAfz'
>>> # The following UUID to Base58 encoding is from NPM uuid-base58, for
→˓comparison
>>> uuid_to_base58(uuid.UUID('d7ce8475-e77c-43b0-9dde-56b428981999'))
'TedLUruK7MosG1Z88urTkk'

coaster.utils.misc.uuid_to_base64(value)
Convert a UUID object to a 22-char URL-safe Base64 string (BUID)

>>> uuid_to_base64(uuid.UUID('33203dd2-f2ef-422f-aeb0-058d6f5f7089'))
'MyA90vLvQi-usAWNb19wiQ'

coaster.utils.misc.valid_username(candidate)
Check if a username is valid.

>>> valid_username('example person')
False
>>> valid_username('example_person')
False
>>> valid_username('exampleperson')
True
>>> valid_username('example-person')
True
>>> valid_username('a')
True
>>> (valid_username('a-') or valid_username('ab-') or valid_username('-a') or
... valid_username('-ab'))
False

28 Chapter 1. Coaster documentation

Coaster Documentation, Release 0.7.0

1.7 Date, time and timezone utilities

coaster.utils.datetime.utcnow()
Returns the current time at UTC with tzinfo set

coaster.utils.datetime.parse_isoformat(text, naive=True, delimiter=’T’)
Attempts to parse an ISO 8601 timestamp as generated by datetime.isoformat(). Timestamps without a timezone
are assumed to be at UTC. Raises ParseError if the timestamp cannot be parsed.

Parameters naive (bool) – If True, strips timezone and returns datetime at UTC.

coaster.utils.datetime.isoweek_datetime(year, week, timezone=’UTC’, naive=False)
Returns a datetime matching the starting point of a specified ISO week in the specified timezone (default UTC).
Returns a naive datetime in UTC if requested (default False).

>>> isoweek_datetime(2017, 1)
datetime.datetime(2017, 1, 2, 0, 0, tzinfo=<UTC>)
>>> isoweek_datetime(2017, 1, 'Asia/Kolkata')
datetime.datetime(2017, 1, 1, 18, 30, tzinfo=<UTC>)
>>> isoweek_datetime(2017, 1, 'Asia/Kolkata', naive=True)
datetime.datetime(2017, 1, 1, 18, 30)
>>> isoweek_datetime(2008, 1, 'Asia/Kolkata')
datetime.datetime(2007, 12, 30, 18, 30, tzinfo=<UTC>)

coaster.utils.datetime.midnight_to_utc(dt, timezone=None, naive=False)
Returns a UTC datetime matching the midnight for the given date or datetime.

>>> from datetime import date
>>> midnight_to_utc(datetime(2017, 1, 1))
datetime.datetime(2017, 1, 1, 0, 0, tzinfo=<UTC>)
>>> midnight_to_utc(pytz.timezone('Asia/Kolkata').localize(datetime(2017, 1, 1)))
datetime.datetime(2016, 12, 31, 18, 30, tzinfo=<UTC>)
>>> midnight_to_utc(datetime(2017, 1, 1), naive=True)
datetime.datetime(2017, 1, 1, 0, 0)
>>> midnight_to_utc(pytz.timezone('Asia/Kolkata').localize(datetime(2017, 1, 1)),
... naive=True)
datetime.datetime(2016, 12, 31, 18, 30)
>>> midnight_to_utc(date(2017, 1, 1))
datetime.datetime(2017, 1, 1, 0, 0, tzinfo=<UTC>)
>>> midnight_to_utc(date(2017, 1, 1), naive=True)
datetime.datetime(2017, 1, 1, 0, 0)
>>> midnight_to_utc(date(2017, 1, 1), timezone='Asia/Kolkata')
datetime.datetime(2016, 12, 31, 18, 30, tzinfo=<UTC>)
>>> midnight_to_utc(datetime(2017, 1, 1), timezone='Asia/Kolkata')
datetime.datetime(2016, 12, 31, 18, 30, tzinfo=<UTC>)
>>> midnight_to_utc(pytz.timezone('Asia/Kolkata').localize(datetime(2017, 1, 1)),
... timezone='UTC')
datetime.datetime(2017, 1, 1, 0, 0, tzinfo=<UTC>)

coaster.utils.datetime.sorted_timezones()
Return a list of timezones sorted by offset from UTC.

coaster.utils.datetime.ParseError
alias of aniso8601.exceptions.ISOFormatError

1.7. Date, time and timezone utilities 29

https://docs.python.org/2/library/functions.html#bool

Coaster Documentation, Release 0.7.0

1.8 Text processing utilities

coaster.utils.text.compress_whitespace(text)
Reduce all space-like characters into single spaces and strip from ends.

coaster.utils.text.deobfuscate_email(text)
Deobfuscate email addresses in provided text.

coaster.utils.text.normalize_spaces(text)
Replace whitespace characters with regular spaces.

coaster.utils.text.normalize_spaces_multiline(text)
Replace whitespace characters with regular spaces, in multiline text.

Line break characters like newlines are not considered whitespace.

coaster.utils.text.sanitize_html(value, valid_tags=None, strip=True, linkify=False)
Strip unwanted markup out of HTML.

coaster.utils.text.simplify_text(text)
Simplify text to allow comparison.

>>> simplify_text("Awesome Coder wanted at Awesome Company")
'awesome coder wanted at awesome company'
>>> simplify_text("Awesome Coder, wanted at Awesome Company! ")
'awesome coder wanted at awesome company'
>>> simplify_text("Awesome Coder, wanted at Awesome Company! ") == (
... 'awesome coder wanted at awesome company')
True

coaster.utils.text.text_blocks(html_text, skip_pre=True)
Extracts a list of paragraphs from a given HTML string.

coaster.utils.text.ulstrip(text)
Strip Unicode extended whitespace from the left side of a string.

coaster.utils.text.urstrip(text)
Strip Unicode extended whitespace from the right side of a string.

coaster.utils.text.ustrip(text)
Strip Unicode extended whitespace from a string.

1.9 Markdown processor

Markdown parser with a number of sane defaults that resembles GitHub-Flavoured Markdown (GFM).

GFM exists because normal markdown has some vicious gotchas. Further reading: http://blog.stackoverflow.com/
2009/10/markdown-one-year-later/

This Markdown processor is used by MarkdownColumn() to auto-render HTML from Markdown text.

coaster.utils.markdown.markdown(text: Optional[str], html: bool = False, linkify: bool
= True, valid_tags: Union[List[str], Mapping[str, List[T]],
None] = None, extensions: Optional[List[Union[str, mark-
down.extensions.Extension]]] = None, extension_configs: Op-
tional[Mapping[str, Mapping[str, Any]]] = None) → Op-
tional[markupsafe.Markup]

Markdown parser with a number of sane defaults that resemble GFM.

30 Chapter 1. Coaster documentation

http://blog.stackoverflow.com/2009/10/markdown-one-year-later/
http://blog.stackoverflow.com/2009/10/markdown-one-year-later/

Coaster Documentation, Release 0.7.0

Parameters

• html (bool) – Allow known-safe HTML tags in text (this disables code syntax highlight-
ing and task lists)

• linkify (bool) – Whether to convert naked URLs into links

• valid_tags (dict) – Valid tags and attributes if HTML is allowed

• extensions (list) – List of Markdown extensions to be enabled

• extension_configs (dict) – Config for Markdown extensions

1.10 PostgreSQL query processor

coaster.utils.tsquery.for_tsquery(text)
Tokenize text into a valid PostgreSQL to_tsquery query.

>>> for_tsquery(" ")
''
>>> for_tsquery("This is a test")
"'This is a test'"
>>> for_tsquery('Match "this AND phrase"')
"'Match this'&'phrase'"
>>> for_tsquery('Match "this & phrase"')
"'Match this'&'phrase'"
>>> for_tsquery("This NOT that")
"'This'&!'that'"
>>> for_tsquery("This & NOT that")
"'This'&!'that'"
>>> for_tsquery("This > that")
"'This > that'"
>>> for_tsquery("Ruby AND (Python OR JavaScript)")
"'Ruby'&('Python'|'JavaScript')"
>>> for_tsquery("Ruby AND NOT (Python OR JavaScript)")
"'Ruby'&!('Python'|'JavaScript')"
>>> for_tsquery("Ruby NOT (Python OR JavaScript)")
"'Ruby'&!('Python'|'JavaScript')"
>>> for_tsquery("Ruby (Python OR JavaScript) Golang")
"'Ruby'&('Python'|'JavaScript')&'Golang'"
>>> for_tsquery("Ruby (Python OR JavaScript) NOT Golang")
"'Ruby'&('Python'|'JavaScript')&!'Golang'"
>>> for_tsquery("Java*")
"'Java':*"
>>> for_tsquery("Java**")
"'Java':*"
>>> for_tsquery("Android || Python")
"'Android'|'Python'"
>>> for_tsquery("Missing (bracket")
"'Missing'&('bracket')"
>>> for_tsquery("Extra bracket)")
"('Extra bracket')"
>>> for_tsquery("Android (Python ())")
"'Android'&('Python')"
>>> for_tsquery("Android (Python !())")
"'Android'&('Python')"
>>> for_tsquery("()")
''

(continues on next page)

1.10. PostgreSQL query processor 31

https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/stdtypes.html#dict
https://docs.python.org/2/library/stdtypes.html#dict

Coaster Documentation, Release 0.7.0

(continued from previous page)

>>> for_tsquery("(")
''
>>> for_tsquery("() Python")
"'Python'"
>>> for_tsquery("!() Python")
"'Python'"
>>> for_tsquery("*")
''
>>> for_tsquery("/etc/passwd\x00")
"'/etc/passwd'"

1.11 Utility classes

class coaster.utils.classes.NameTitle(name, title)

name
Alias for field number 0

title
Alias for field number 1

class coaster.utils.classes.LabeledEnum
Labeled enumerations. Declarate an enumeration with values and labels (for use in UI):

>>> class MY_ENUM(LabeledEnum):
... FIRST = (1, "First")
... THIRD = (3, "Third")
... SECOND = (2, "Second")

LabeledEnum will convert any attribute that is a 2-tuple into a value and label pair. Access values as direct
attributes of the enumeration:

>>> MY_ENUM.FIRST
1
>>> MY_ENUM.SECOND
2
>>> MY_ENUM.THIRD
3

Access labels via dictionary lookup on the enumeration:

>>> MY_ENUM[MY_ENUM.FIRST]
'First'
>>> MY_ENUM[2]
'Second'
>>> MY_ENUM.get(3)
'Third'
>>> MY_ENUM.get(4) is None
True

Retrieve a full list of values and labels with .items(). Definition order is preserved in Python 3.x, but not in
2.x:

32 Chapter 1. Coaster documentation

Coaster Documentation, Release 0.7.0

>>> sorted(MY_ENUM.items())
[(1, 'First'), (2, 'Second'), (3, 'Third')]
>>> sorted(MY_ENUM.keys())
[1, 2, 3]
>>> sorted(MY_ENUM.values())
['First', 'Second', 'Third']

However, if you really want ordering in Python 2.x, add an __order__ list. Anything not in it will default to
Python’s ordering:

>>> class RSVP(LabeledEnum):
... RSVP_Y = ('Y', "Yes")
... RSVP_N = ('N', "No")
... RSVP_M = ('M', "Maybe")
... RSVP_U = ('U', "Unknown")
... RSVP_A = ('A', "Awaiting")
... __order__ = (RSVP_Y, RSVP_N, RSVP_M, RSVP_A)

>>> RSVP.items()
[('Y', 'Yes'), ('N', 'No'), ('M', 'Maybe'), ('A', 'Awaiting'), ('U', 'Unknown')]

Three value tuples are assumed to be (value, name, title) and the name and title are converted into NameTi-
tle(name, title):

>>> class NAME_ENUM(LabeledEnum):
... FIRST = (1, 'first', "First")
... THIRD = (3, 'third', "Third")
... SECOND = (2, 'second', "Second")
... __order__ = (FIRST, SECOND, THIRD)

>>> NAME_ENUM.FIRST
1
>>> NAME_ENUM[NAME_ENUM.FIRST]
NameTitle(name='first', title='First')
>>> NAME_ENUM[NAME_ENUM.SECOND].name
'second'
>>> NAME_ENUM[NAME_ENUM.THIRD].title
'Third'

To make it easier to use with forms and to hide the actual values, a list of (name, title) pairs is available:

>>> NAME_ENUM.nametitles()
[('first', 'First'), ('second', 'Second'), ('third', 'Third')]

Given a name, the value can be looked up:

>>> NAME_ENUM.value_for('first')
1
>>> NAME_ENUM.value_for('second')
2

Values can be grouped together using a set, for performing “in” operations. These do not have labels and cannot
be accessed via dictionary access:

>>> class RSVP_EXTRA(LabeledEnum):
... RSVP_Y = ('Y', "Yes")
... RSVP_N = ('N', "No")

(continues on next page)

1.11. Utility classes 33

Coaster Documentation, Release 0.7.0

(continued from previous page)

... RSVP_M = ('M', "Maybe")

... RSVP_U = ('U', "Unknown")

... RSVP_A = ('A', "Awaiting")

... __order__ = (RSVP_Y, RSVP_N, RSVP_M, RSVP_U, RSVP_A)

... UNCERTAIN = {RSVP_M, RSVP_U, 'A'}

>>> isinstance(RSVP_EXTRA.UNCERTAIN, set)
True
>>> sorted(RSVP_EXTRA.UNCERTAIN)
['A', 'M', 'U']
>>> 'N' in RSVP_EXTRA.UNCERTAIN
False
>>> 'M' in RSVP_EXTRA.UNCERTAIN
True
>>> RSVP_EXTRA.RSVP_U in RSVP_EXTRA.UNCERTAIN
True

Labels are stored internally in a dictionary named __labels__, mapping the value to the label. Symbol names
are stored in __names__, mapping name to the value. The label dictionary will only contain values processed
using the tuple syntax, which excludes grouped values, while the names dictionary will contain both, but will
exclude anything else found in the class that could not be processed (use __dict__ for everything):

>>> list(RSVP_EXTRA.__labels__.keys())
['Y', 'N', 'M', 'U', 'A']
>>> list(RSVP_EXTRA.__names__.keys())
['RSVP_Y', 'RSVP_N', 'RSVP_M', 'RSVP_U', 'RSVP_A', 'UNCERTAIN']

class coaster.utils.classes.InspectableSet(members=())
Given a set, mimics a read-only dictionary where the items are keys and have a value of True, and any other key
has a value of False. Also supports attribute access. Useful in templates to simplify membership inspection:

>>> myset = InspectableSet({'member', 'other'})
>>> 'member' in myset
True
>>> 'random' in myset
False
>>> myset.member
True
>>> myset.random
False
>>> myset['member']
True
>>> myset['random']
False
>>> joinset = myset | {'added'}
>>> isinstance(joinset, InspectableSet)
True
>>> joinset = joinset | InspectableSet({'inspectable'})
>>> isinstance(joinset, InspectableSet)
True
>>> 'member' in joinset
True
>>> 'other' in joinset
True
>>> 'added' in joinset
True

(continues on next page)

34 Chapter 1. Coaster documentation

Coaster Documentation, Release 0.7.0

(continued from previous page)

>>> 'inspectable' in joinset
True
>>> emptyset = InspectableSet()
>>> len(emptyset)
0

class coaster.utils.classes.classmethodproperty(func)
Class method decorator to make class methods behave like properties:

>>> class Foo:
... @classmethodproperty
... def test(cls):
... return repr(cls)
...

Works on classes:

>>> Foo.test
"<class 'coaster.utils.classes.Foo'>"

Works on class instances:

>>> Foo().test
"<class 'coaster.utils.classes.Foo'>"

Works on subclasses too:

>>> class Bar(Foo):
... pass
...
>>> Bar.test
"<class 'coaster.utils.classes.Bar'>"
>>> Bar().test
"<class 'coaster.utils.classes.Bar'>"

Due to limitations in Python’s descriptor API, classmethodproperty can block write and delete access
on an instance. . .

>>> Foo().test = 'bar'
Traceback (most recent call last):
AttributeError: test is read-only
>>> del Foo().test
Traceback (most recent call last):
AttributeError: test is read-only

. . . but not on the class itself:

>>> Foo.test = 'bar'
>>> Foo.test
'bar'

1.12 Authentication management

Coaster provides a current_auth for handling authentication. Login managers must comply with its API for
Coaster’s view handlers to work.

1.12. Authentication management 35

Coaster Documentation, Release 0.7.0

If a login manager installs itself as current_app.login_manager and provides a _load_user() method,
it will be called when current_auth is invoked for the first time in a request. Login managers can call
add_auth_attribute() to load the actor (typically the authenticated user) and any other relevant authentica-
tion attributes.

For compatibility with Flask-Login, a user object loaded at _request_ctx_stack.top.userwill be recognised
and made available via current_auth.

coaster.auth.add_auth_attribute(attr, value, actor=False)
Helper function for login managers. Adds authorization attributes to current_auth for the duration of the
request.

Parameters

• attr (str) – Name of the attribute

• value – Value of the attribute

• actor (bool) – Whether this attribute is an actor (user or client app accessing own data)

If the attribute is an actor and current_auth does not currently have an actor, the attribute is also made
available as current_auth.actor, which in turn is used by current_auth.is_authenticated.

The attribute name user is special-cased:

1. user is always treated as an actor

2. user is also made available as _request_ctx_stack.top.user for compatibility with Flask-
Login

coaster.auth.add_auth_anchor(anchor)
Helper function for login managers and view handlers to add a new auth anchor. This is a placeholder until
anchors are properly specified.

coaster.auth.request_has_auth()
Helper function that returns True if current_auth was invoked during the current request. A login manager
can use this during request teardown to set cookies or perform other housekeeping functions.

coaster.auth.current_auth = CurrentAuth(None)
A proxy object that hosts state for user authentication, attempting to load state from request context if not already
loaded. Returns a CurrentAuth. Typical use:

from coaster.auth import current_auth

@app.route('/')
def user_check():

if current_auth.is_authenticated:
return "We have a user"

else:
return "User not logged in"

1.13 View helpers

Coaster provides classes, functions and decorators for common scenarios in view handlers.

1.14 Miscellaneous view helpers

Helper functions for view handlers.

36 Chapter 1. Coaster documentation

https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#bool

Coaster Documentation, Release 0.7.0

All items in this module can be imported directly from coaster.views.

coaster.views.misc.get_current_url()
Return the current URL including the query string as a relative path. If the app uses subdomains, return an
absolute path

coaster.views.misc.get_next_url(referrer=False, external=False, session=False, de-
fault=<object object>)

Get the next URL to redirect to. Don’t return external URLs unless explicitly asked for. This is to protect the
site from being an unwitting redirector to external URLs. Subdomains are okay, however.

This function looks for a next parameter in the request or in the session (depending on whether parameter
session is True). If no next is present, it checks the referrer (if enabled), and finally returns either the
provided default (which can be any value including None) or the script root (typically /).

coaster.views.misc.jsonp(*args, **kw)
Returns a JSON response with a callback wrapper, if asked for. Consider using CORS instead, as JSONP makes
the client app insecure. See the cors() decorator.

coaster.views.misc.endpoint_for(url, method=None, return_rule=False, follow_redirects=True)
Given an absolute URL, retrieve the matching endpoint name (or rule) and view arguments. Requires a current
request context to determine runtime environment.

Parameters

• method (str) – HTTP method to use (defaults to GET)

• return_rule (bool) – Return the URL rule instead of the endpoint name

• follow_redirects (bool) – Follow redirects to final endpoint

Returns Tuple of endpoint name or URL rule or None, view arguments

1.15 View decorators

Decorators for view handlers.

All items in this module can be imported directly from coaster.views.

exception coaster.views.decorators.RequestTypeError(description: Optional[str]
= None, response: Op-
tional[Response] = None)

Exception that combines TypeError with BadRequest. Used by requestargs().

exception coaster.views.decorators.RequestValueError(description: Optional[str]
= None, response: Op-
tional[Response] = None)

Exception that combines ValueError with BadRequest. Used by requestargs().

coaster.views.decorators.requestargs(*args, **config)
Decorator that loads parameters from request.values if not specified in the function’s keyword arguments. Usage:

@requestargs('param1', ('param2', int), 'param3[]', ...)
def function(param1, param2=0, param3=None):

...

requestargs takes a list of parameters to pass to the wrapped function, with an optional filter (useful to con-
vert incoming string request data into integers and other common types). If a required parameter is missing
and your function does not specify a default value, Python will raise TypeError. requestargs recasts this as
RequestTypeError, which returns HTTP 400 Bad Request.

1.15. View decorators 37

https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/functions.html#bool

Coaster Documentation, Release 0.7.0

If the parameter name ends in [], requestargs will attempt to read a list from the incoming data. Filters are
applied to each member of the list, not to the whole list.

If the filter raises a ValueError, this is recast as a RequestValueError, which also returns HTTP 400 Bad
Request.

Tests:

>>> from flask import Flask
>>> app = Flask(__name__)
>>>
>>> @requestargs('p1', ('p2', int), ('p3[]', int))
... def f(p1, p2=None, p3=None):
... return p1, p2, p3
...
>>> f(p1=1)
(1, None, None)
>>> f(p1=1, p2=2)
(1, 2, None)
>>> f(p1='a', p2='b')
('a', 'b', None)
>>> with app.test_request_context('/?p2=2'):
... f(p1='1')
...
('1', 2, None)
>>> with app.test_request_context('/?p3=1&p3=2'):
... f(p1='1', p2='2')
...
('1', '2', [1, 2])
>>> with app.test_request_context('/?p2=100&p3=1&p3=2'):
... f(p1='1', p2=200)
...
('1', 200, [1, 2])

coaster.views.decorators.requestform(*args)
Like requestargs(), but loads from request.form (the form submission).

coaster.views.decorators.requestquery(*args)
Like requestargs(), but loads from request.args (the query string).

coaster.views.decorators.load_model(model, attributes=None, parameter=None,
kwargs=False, permission=None, addlperms=None,
urlcheck=())

Decorator to load a model given a query parameter.

Typical usage:

@app.route('/<profile>')
@load_model(Profile, {'name': 'profile'}, 'profileob')
def profile_view(profileob):

'profileob' is now a Profile model instance.
The load_model decorator replaced this:
profileob = Profile.query.filter_by(name=profile).first_or_404()
return "Hello, %s" % profileob.name

Using the same name for request and parameter makes code easier to understand:

@app.route('/<profile>')
@load_model(Profile, {'name': 'profile'}, 'profile')

(continues on next page)

38 Chapter 1. Coaster documentation

Coaster Documentation, Release 0.7.0

(continued from previous page)

def profile_view(profile):
return "Hello, %s" % profile.name

load_model aborts with a 404 if no instance is found.

Parameters

• model – The SQLAlchemy model to query. Must contain a query object (which is the
default with Flask-SQLAlchemy)

• attributes – A dict of attributes (from the URL request) that will be used to query for
the object. For each key:value pair, the key is the name of the column on the model and the
value is the name of the request parameter that contains the data

• parameter – The name of the parameter to the decorated function via which the result is
passed. Usually the same as the attribute. If the parameter name is prefixed with ‘g.’, the
parameter is also made available as g.<parameter>

• kwargs – If True, the original request parameters are passed to the decorated function as a
kwargs parameter

• permission – If present, load_model calls the permissions() method of the
retrieved object with current_auth.actor as a parameter. If permission is not
present in the result, load_model aborts with a 403. The permission may be a string or a
list of strings, in which case access is allowed if any of the listed permissions are available

• addlperms – Iterable or callable that returns an iterable containing additional permissions
available to the user, apart from those granted by the models. In an app that uses Lastuser for
authentication, passing lastuser.permissionswill pass through permissions granted
via Lastuser

• urlcheck (list) – If an attribute in this list has been used to load an object, but
the value of the attribute in the loaded object does not match the request argument, is-
sue a redirect to the corrected URL. This is useful for attributes like url_id_name and
url_name_uuid_b58 where the name component may change

coaster.views.decorators.load_models(*chain, **kwargs)
Decorator to load a chain of models from the given parameters. This works just like load_model() and
accepts the same parameters, with some small differences.

Parameters

• chain – The chain is a list of tuples of (model, attributes, parameter). Lists and
tuples can be used interchangeably. All retrieved instances are passed as parameters to the
decorated function

• permission – Same as in load_model(), except permissions() is called on ev-
ery instance in the chain and the retrieved permissions are passed as the second parameter
to the next instance in the chain. This allows later instances to revoke permissions granted
by earlier instances. As an example, if a URL represents a hierarchy such as /<page>/
<comment>, the page can assign edit and delete permissions, while the comment
can revoke edit and retain delete if the current user owns the page but not the comment

In the following example, load_models loads a Folder with a name matching the name in the URL, then loads a
Page with a matching name and with the just-loaded Folder as parent. If the Page provides a ‘view’ permission
to the current user, the decorated function is called:

@app.route('/<folder_name>/<page_name>')
@load_models(

(continues on next page)

1.15. View decorators 39

Coaster Documentation, Release 0.7.0

(continued from previous page)

(Folder, {'name': 'folder_name'}, 'folder'),
(Page, {'name': 'page_name', 'parent': 'folder'}, 'page'),
permission='view')

def show_page(folder, page):
return render_template('page.html', folder=folder, page=page)

coaster.views.decorators.render_with(template=None, json=False, jsonp=False)
Decorator to render the wrapped function with the given template (or dictionary of mimetype keys to templates,
where the template is a string name of a template file or a callable that returns a Response). The function’s
return value must be a dictionary and is passed to the template as parameters. Callable templates get a single
parameter with the function’s return value. Usage:

@app.route('/myview')
@render_with('myview.html')
def myview():

return {'data': 'value'}

@app.route('/myview_with_json')
@render_with('myview.html', json=True)
def myview_no_json():

return {'data': 'value'}

@app.route('/otherview')
@render_with({

'text/html': 'otherview.html',
'text/xml': 'otherview.xml'})

def otherview():
return {'data': 'value'}

@app.route('/404view')
@render_with('myview.html')
def myview():

return {'error': '404 Not Found'}, 404

@app.route('/headerview')
@render_with('myview.html')
def myview():

return {'data': 'value'}, 200, {'X-Header': 'Header value'}

When a mimetype is specified and the template is not a callable, the response is returned with the same mime-
type. Callable templates must return Response objects to ensure the correct mimetype is set.

If a dictionary of templates is provided and does not include a handler for */*, render_with will attempt to use
the handler for (in order) text/html, text/plain and the various JSON types, falling back to rendering
the value into a unicode string.

If the method is called outside a request context, the wrapped method’s original return value is returned. This
is meant to facilitate testing and should not be used to call the method from within another view handler as the
presence of a request context will trigger template rendering.

Rendering may also be suspended by calling the view handler with _render=False.

render_with provides JSON and JSONP handlers for the application/json, text/json and text/
x-json mimetypes if json or jsonp is True (default is False).

Parameters

• template – Single template, or dictionary of MIME type to templates. If the template is

40 Chapter 1. Coaster documentation

Coaster Documentation, Release 0.7.0

a callable, it is called with the output of the wrapped function

• json – Helper to add a JSON handler (default is False)

• jsonp – Helper to add a JSONP handler (if True, also provides JSON, default is False)

coaster.views.decorators.cors(origins, methods=(’HEAD’, ’OPTIONS’, ’GET’, ’POST’, ’PUT’,
’PATCH’, ’DELETE’), headers=(’Accept’, ’Accept-Language’,
’Content-Language’, ’Content-Type’, ’X-Requested-With’),
max_age=None)

Adds CORS headers to the decorated view function.

Parameters

• origins – Allowed origins (see below)

• methods – A list of allowed HTTP methods

• headers – A list of allowed HTTP headers

• max_age – Duration in seconds for which the CORS response may be cached

The origins parameter may be one of:

1. A callable that receives the origin as a parameter.

2. A list of origins.

3. *, indicating that this resource is accessible by any origin.

Example use:

from flask import Flask, Response
from coaster.views import cors

app = Flask(__name__)

@app.route('/any')
@cors('*')
def any_origin():

return Response()

@app.route('/static', methods=['GET', 'POST'])
@cors(

['https://hasgeek.com'],
methods=['GET'],
headers=['Content-Type', 'X-Requested-With'],
max_age=3600)

def static_list():
return Response()

def check_origin(origin):
check if origin should be allowed
return True

@app.route('/callable')
@cors(check_origin)
def callable_function():

return Response()

coaster.views.decorators.requires_permission(permission)
View decorator that requires a certain permission to be present in current_auth.permissions before
the view is allowed to proceed. Aborts with 403 Forbidden if the permission is not present.

1.15. View decorators 41

Coaster Documentation, Release 0.7.0

The decorated view will have an is_available method that can be called to perform the same test.

Parameters permission – Permission that is required. If a collection type is provided, any one
permission must be available

1.16 Class-based views

Group related views into a class for easier management.

coaster.views.classview.rulejoin(class_rule, method_rule)
Join class and method rules. Used internally by ClassView to combine rules from the route() decorators
on the class and on the individual view handler methods:

>>> rulejoin('/', '')
'/'
>>> rulejoin('/', 'first')
'/first'
>>> rulejoin('/first', '/second')
'/second'
>>> rulejoin('/first', 'second')
'/first/second'
>>> rulejoin('/first/', 'second')
'/first/second'
>>> rulejoin('/first/<second>', '')
'/first/<second>'
>>> rulejoin('/first/<second>', 'third')
'/first/<second>/third'

coaster.views.classview.current_view = None
A proxy object that holds the currently executing ClassView instance, for use in templates as context. Ex-
posed to templates by coaster.app.init_app(). Note that the current view handler method within the
class is named current_handler, so to examine it, use current_view.current_handler.

class coaster.views.classview.ClassView
Base class for defining a collection of views that are related to each other. Subclasses may define methods
decorated with route(). When init_app() is called, these will be added as routes to the app.

Typical use:

@route('/')
class IndexView(ClassView):

@viewdata(title="Homepage")
@route('')
def index():

return render_template('index.html.jinja2')

@route('about')
@viewdata(title="About us")
def about():

return render_template('about.html.jinja2')

IndexView.init_app(app)

The route() decorator on the class specifies the base rule, which is prefixed to the rule specified on each view
method. This example produces two view handlers, for / and /about. Multiple route() decorators may be
used in both places.

42 Chapter 1. Coaster documentation

Coaster Documentation, Release 0.7.0

The viewdata() decorator can be used to specify additional data, and may appear either before or after the
route() decorator, but only adjacent to it. Data specified here is available as the data attribute on the view
handler, or at runtime in templates as current_view.current_handler.data.

A rudimentary CRUD view collection can be assembled like this:

@route('/doc/<name>')
class DocumentView(ClassView):

@route('')
@render_with('mydocument.html.jinja2', json=True)
def view(self, name):

document = MyDocument.query.filter_by(name=name).first_or_404()
return document.current_access()

@route('edit', methods=['POST'])
@requestform('title', 'content')
def edit(self, name, title, content):

document = MyDocument.query.filter_by(name=name).first_or_404()
document.title = title
document.content = content
return 'edited!'

DocumentView.init_app(app)

See ModelView for a better way to build views around a model.

classmethod add_route_for(_name, rule, **options)
Add a route for an existing method or view. Useful for modifying routes that a subclass inherits from a
base class:

class BaseView(ClassView):
def latent_view(self):

return 'latent-view'

@route('other')
def other_view(self):

return 'other-view'

@route('/path')
class SubView(BaseView):

pass

SubView.add_route_for('latent_view', 'latent')
SubView.add_route_for('other_view', 'another')
SubView.init_app(app)

Created routes:
/path/latent -> SubView.latent (added)
/path/other -> SubView.other (inherited)
/path/another -> SubView.other (added)

Parameters

• _name – Name of the method or view on the class

• rule – URL rule to be added

• options – Additional options for add_url_rule()

1.16. Class-based views 43

https://flask.palletsprojects.com/en/2.0.x/api/#flask.Flask.add_url_rule

Coaster Documentation, Release 0.7.0

after_request(response)
This method is called with the response from the view handler method. It must return a valid response
object. Subclasses and mixin classes may override this to perform any necessary post-processing:

class MyView(ClassView):
...
def after_request(self, response):

response = super().after_request(response)
... # Process here
return response

Parameters response – Response from the view handler method

Returns Response object

before_request()
This method is called after the app’s before_request handlers, and before the class’s view method.
Subclasses and mixin classes may define their own before_request() to pre-process requests. This
method receives context via self, in particular via current_handler and view_args.

current_handler = None
When a view is called, this will point to the current view handler, an instance of ViewHandler.

dispatch_request(view, view_args)
View dispatcher that calls before_request, the view, and then after_request. Subclasses may override this
to provide a custom flow. ModelView does this to insert a model loading phase.

Parameters

• view – View method wrapped in specified decorators. The dispatcher must call this

• view_args (dict) – View arguments, to be passed on to the view method

classmethod init_app(app, callback=None)
Register views on an app. If callback is specified, it will be called after app.add_url_rule(),
with the same parameters.

is_always_available = False
Indicates whether meth:is_available should simply return True without conducting a test. Subclasses
should not set this flag. It will be set by init_app() if any view handler is missing an is_available
method, as it implies that view is always available.

is_available()
Returns True if any view handler in the class is currently available via its is_available method.

view_args = None
When a view is called, this will be replaced with a dictionary of arguments to the view.

class coaster.views.classview.ModelView(obj=None)
Base class for constructing views around a model. Functionality is provided via mixin classes that must precede
ModelView in base class order. Two mixins are provided: UrlForView and InstanceLoader. Sample
use:

@route('/doc/<document>')
class DocumentView(UrlForView, InstanceLoader, ModelView):

model = Document
route_model_map = {

'document': 'name'
}

(continues on next page)

44 Chapter 1. Coaster documentation

https://docs.python.org/2/library/stdtypes.html#dict
https://flask.palletsprojects.com/en/2.0.x/api/#flask.Flask.add_url_rule

Coaster Documentation, Release 0.7.0

(continued from previous page)

@route('')
@render_with(json=True)
def view(self):

return self.obj.current_access()

Document.views.main = DocumentView
DocumentView.init_app(app)

Views will not receive view arguments, unlike in ClassView . If necessary, they are available as self.view_args.

dispatch_request(view, view_args)
View dispatcher that calls before_request(), loader(), after_loader(), the view, and then
after_request().

Parameters

• view – View method wrapped in specified decorators.

• view_args (dict) – View arguments, to be passed on to the view method

loader(**view_args)
Subclasses or mixin classes may override this method to provide a model instance loader. The return value
of this method will be placed at self.obj.

Returns Object instance loaded from database

model = None
The model that this view class represents, to be specified by subclasses.

query = None
A base query to use if the model needs special handling.

route_model_map = {}
A mapping of URL rule variables to attributes on the model. For example, if the URL rule is /<parent>/
<document>, the attribute map can be:

model = MyModel
route_model_map = {

'document': 'name', # Map 'document' in URL to MyModel.name
'parent': 'parent.name', # Map 'parent' to MyModel.parent.name
}

The InstanceLoader mixin class will convert this mapping into SQLAlchemy attribute references to
load the instance object.

coaster.views.classview.route(rule, **options)
Decorator for defining routes on a ClassView and its methods. Accepts the same parameters that Flask’s
app.route() accepts. See ClassView for usage notes.

coaster.views.classview.viewdata(**kwargs)
Decorator for adding additional data to a view method, to be used alongside route(). This data is accessible
as the data attribute on the view handler.

coaster.views.classview.url_change_check(f)
View method decorator that checks the URL of the loaded object in self.obj against the URL in the request
(using self.obj.url_for(__name__)). If the URLs do not match, and the request is a GET, it issues a
redirect to the correct URL. Usage:

1.16. Class-based views 45

https://docs.python.org/2/library/stdtypes.html#dict
https://flask.palletsprojects.com/en/2.0.x/api/#flask.Flask.route

Coaster Documentation, Release 0.7.0

@route('/doc/<document>')
class MyModelView(UrlForView, InstanceLoader, ModelView):

model = MyModel
route_model_map = {'document': 'url_id_name'}

@route('')
@url_change_check
@render_with(json=True)
def view(self):

return self.obj.current_access()

If the decorator is required for all view handlers in the class, use UrlChangeCheck.

This decorator will only consider the URLs to be different if:

• Schemes differ (http vs https etc)

• Hostnames differ (apart from a case difference, as user agents use lowercase)

• Paths differ

The current URL’s query will be copied to the redirect URL. The URL fragment (#target_id) is not available
to the server and will be lost.

coaster.views.classview.requires_roles(roles)
Decorator for ModelView views that limits access to the specified roles.

class coaster.views.classview.UrlChangeCheck
Mixin class for ModelView and UrlForMixin that applies the url_change_check() decorator to all
view handler methods. Subclasses UrlForView , which it depends on to register the view with the model so
that URLs can be generated. Usage:

@route('/doc/<document>')
class MyModelView(UrlChangeCheck, InstanceLoader, ModelView):

model = MyModel
route_model_map = {'document': 'url_id_name'}

@route('')
@render_with(json=True)
def view(self):

return self.obj.current_access()

class coaster.views.classview.UrlForView
Mixin class for ModelView that registers view handler methods with UrlForMixin’s is_url_for().

class coaster.views.classview.InstanceLoader
Mixin class for ModelView that provides a loader() that attempts to load an instance of the model based
on attributes in the route_model_map dictionary.

InstanceLoader will traverse relationships (many-to-one or one-to-one) and perform a SQL JOIN with the
target class.

1.17 SQLAlchemy patterns

Coaster provides a number of SQLAlchemy helper functions and mixin classes that add standard columns or special
functionality.

All functions and mixins are importable from the coaster.sqlalchemy namespace.

46 Chapter 1. Coaster documentation

Coaster Documentation, Release 0.7.0

1.18 SQLAlchemy mixin classes

Coaster provides a number of mixin classes for SQLAlchemy models. To use in your Flask app:

from flask import Flask
from flask_sqlalchemy import SQLAlchemy
from coaster.sqlalchemy import BaseMixin

app = Flask(__name__)
db = SQLAlchemy(app)

class MyModel(BaseMixin, db.Model):
__tablename__ = 'my_model'

Mixin classes must always appear before db.Model in your model’s base classes.

class coaster.sqlalchemy.mixins.IdMixin
Provides the id primary key column

query_class
alias of coaster.sqlalchemy.comparators.Query

url_id
The URL id, integer primary key rendered as a string

class coaster.sqlalchemy.mixins.TimestampMixin
Provides the created_at and updated_at audit timestamps

query_class
alias of coaster.sqlalchemy.comparators.Query

class coaster.sqlalchemy.mixins.PermissionMixin
Provides the permissions() method used by BaseMixin and derived classes

current_permissions
InspectableSet containing currently available permissions from this object, using current_auth.

permissions(actor, inherited=None)
Return permissions available to the given user on this object

class coaster.sqlalchemy.mixins.UrlDict(obj)
Provides dictionary access to an object’s URLs.

class coaster.sqlalchemy.mixins.UrlForMixin
Provides a url_for() method used by BaseMixin-derived classes

classview_for(action=’view’)
Return the classview that contains the viewhandler for the specified action

classmethod is_url_for(_action, _endpoint=None, _app=None, _external=None, **paramat-
trs)

View decorator that registers the view as a url_for() target.

Parameters

• _action (str) – Action to register a URL under

• _endpoint (str) – View endpoint name to pass to Flask’s url_for

• _app – The app to register this action on (if your repo has multiple apps)

• _external – If True, URLs are assumed to be external-facing by default

1.18. SQLAlchemy mixin classes 47

https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#str

Coaster Documentation, Release 0.7.0

• paramattrs (dict) – Mapping of URL parameter to attribute on the object

classmethod register_endpoint(action, endpoint, app=None, external=None, roles=None,
paramattrs=None)

Helper method for registering an endopint to a url_for() action.

Parameters

• view_func – View handler to be registered

• action (str) – Action to register a URL under

• endpoint (str) – View endpoint name to pass to Flask’s url_for

• app – Flask app (default: None)

• external – If True, URLs are assumed to be external-facing by default

• roles – Roles to which this URL is available, required by UrlDict

• paramattrs (dict) – Mapping of URL parameter to attribute on the object

classmethod register_view_for(app, action, classview, attr)
Register a classview and viewhandler for a given app and action

url_for(action=’view’, **kwargs)
Return public URL to this instance for a given action (default ‘view’).

url_for_endpoints = {None: {}}
Mapping of {app: {action: UrlEndpointData}}, where attr is a string or tuple of strings. The same action
can point to different endpoints in different apps. The app may also be None as fallback. Each subclass
will get its own dictionary. This particular dictionary is only used as an inherited fallback.

urls
Dictionary of URLs available on this object

view_for(action=’view’)
Return the classview viewhandler that handles the specified action

view_for_endpoints = {}
Mapping of {app: {action: (classview, attr)}}

class coaster.sqlalchemy.mixins.NoIdMixin
Mixin that combines all mixin classes except IdMixin, for use anywhere the timestamp columns and helper
methods are required, but an id column is not.

class coaster.sqlalchemy.mixins.BaseMixin
Base mixin class for all tables that have an id column.

class coaster.sqlalchemy.mixins.BaseNameMixin(*args, **kw)
Base mixin class for named objects

Changed in version 0.5.0: If you used BaseNameMixin in your app before Coaster 0.5.0: name can no longer be
a blank string in addition to being non-null. This is configurable and enforced with a SQL CHECK constraint,
which needs a database migration:

for tablename in ['named_table1', 'named_table2', ...]:
Drop CHECK constraint first in case it was already present
op.drop_constraint(tablename + '_name_check', tablename)
Create CHECK constraint
op.create_check_constraint(

tablename + '_name_check',
tablename,
"name <> ''")

48 Chapter 1. Coaster documentation

https://docs.python.org/2/library/stdtypes.html#dict
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/stdtypes.html#dict

Coaster Documentation, Release 0.7.0

classmethod get(name)
Get an instance matching the name

make_name(reserved=())
Autogenerates a name from the title. If the auto-generated name is already in use in this model,
make_name() tries again by suffixing numbers starting with 2 until an available name is found.

Parameters reserved – List or set of reserved names unavailable for use

reserved_names = []
Prevent use of these reserved names

title_for_name
The version of the title used for make_name()

classmethod upsert(name, **fields)
Insert or update an instance

class coaster.sqlalchemy.mixins.BaseScopedNameMixin(*args, **kw)
Base mixin class for named objects within containers. When using this, you must provide an model-level
attribute “parent” that is a synonym for the parent object. You must also create a unique constraint on ‘name’ in
combination with the parent foreign key. Sample use case in Flask:

class Event(BaseScopedNameMixin, db.Model):
__tablename__ = 'event'
organizer_id = db.Column(None, db.ForeignKey('organizer.id'))
organizer = db.relationship(Organizer)
parent = db.synonym('organizer')
__table_args__ = (db.UniqueConstraint('organizer_id', 'name'),)

Changed in version 0.5.0: If you used BaseScopedNameMixin in your app before Coaster 0.5.0: name can no
longer be a blank string in addition to being non-null. This is configurable and enforced with a SQL CHECK
constraint, which needs a database migration:

for tablename in ['named_table1', 'named_table2', ...]:
Drop CHECK constraint first in case it was already present
op.drop_constraint(tablename + '_name_check', tablename)
Create CHECK constraint
op.create_check_constraint(

tablename + '_name_check',
tablename,
"name <> ''")

classmethod get(parent, name)
Get an instance matching the parent and name

make_name(reserved=())
Autogenerates a name from the title. If the auto-generated name is already in use in this model,
make_name() tries again by suffixing numbers starting with 2 until an available name is found.

permissions(actor, inherited=None)
Permissions for this model, plus permissions inherited from the parent.

reserved_names = []
Prevent use of these reserved names

short_title
Generates an abbreviated title by subtracting the parent’s title from this instance’s title.

title_for_name
The version of the title used for make_name()

1.18. SQLAlchemy mixin classes 49

Coaster Documentation, Release 0.7.0

classmethod upsert(parent, name, **fields)
Insert or update an instance

class coaster.sqlalchemy.mixins.BaseIdNameMixin(*args, **kw)
Base mixin class for named objects with an id tag.

Changed in version 0.5.0: If you used BaseIdNameMixin in your app before Coaster 0.5.0: name can no longer
be a blank string in addition to being non-null. This is configurable and enforced with a SQL CHECK constraint,
which needs a database migration:

for tablename in ['named_table1', 'named_table2', ...]:
Drop CHECK constraint first in case it was already present
op.drop_constraint(tablename + '_name_check', tablename)
Create CHECK constraint
op.create_check_constraint(

tablename + '_name_check',
tablename,
"name <> ''")

make_name()
Autogenerates a name from title_for_name

title_for_name
The version of the title used for make_name()

url_id_name
Returns a URL name combining url_id and name in id-name syntax. This property is also available as
url_name for legacy reasons.

url_name
Returns a URL name combining url_id and name in id-name syntax. This property is also available as
url_name for legacy reasons.

url_name_uuid_b58
Returns a URL name combining name and uuid_b58 in name-uuid_b58 syntax. To use this, the class
must derive from UuidMixin.

class coaster.sqlalchemy.mixins.BaseScopedIdMixin(*args, **kw)
Base mixin class for objects with an id that is unique within a parent. Implementations must provide a ‘parent’
attribute that is either a relationship or a synonym to a relationship referring to the parent object, and must
declare a unique constraint between url_id and the parent. Sample use case in Flask:

class Issue(BaseScopedIdMixin, db.Model):
__tablename__ = 'issue'
event_id = db.Column(None, db.ForeignKey('event.id'))
event = db.relationship(Event)
parent = db.synonym('event')
__table_args__ = (db.UniqueConstraint('event_id', 'url_id'),)

classmethod get(parent, url_id)
Get an instance matching the parent and url_id

make_id()
Create a new URL id that is unique to the parent container

permissions(actor, inherited=None)
Permissions for this model, plus permissions inherited from the parent.

class coaster.sqlalchemy.mixins.BaseScopedIdNameMixin(*args, **kw)
Base mixin class for named objects with an id tag that is unique within a parent. Implementations must provide

50 Chapter 1. Coaster documentation

Coaster Documentation, Release 0.7.0

a ‘parent’ attribute that is a synonym to the parent relationship, and must declare a unique constraint between
url_id and the parent. Sample use case in Flask:

class Event(BaseScopedIdNameMixin, db.Model):
__tablename__ = 'event'
organizer_id = db.Column(None, db.ForeignKey('organizer.id'))
organizer = db.relationship(Organizer)
parent = db.synonym('organizer')
__table_args__ = (db.UniqueConstraint('organizer_id', 'url_id'),)

Changed in version 0.5.0: If you used BaseScopedIdNameMixin in your app before Coaster 0.5.0: name can
no longer be a blank string in addition to being non-null. This is configurable and enforced with a SQL CHECK
constraint, which needs a database migration:

for tablename in ['named_table1', 'named_table2', ...]:
Drop CHECK constraint first in case it was already present
op.drop_constraint(tablename + '_name_check', tablename)
Create CHECK constraint
op.create_check_constraint(

tablename + '_name_check',
tablename,
"name <> ''")

classmethod get(parent, url_id)
Get an instance matching the parent and name

make_name()
Autogenerates a title from the name

title_for_name
The version of the title used for make_name()

url_id_name
Returns a URL name combining url_id and name in id-name syntax

url_name
Returns a URL name combining url_id and name in id-name syntax

url_name_uuid_b58
Returns a URL name combining name and uuid_b58 in name-uuid_b58 syntax. To use this, the class
must derive from UuidMixin.

class coaster.sqlalchemy.mixins.CoordinatesMixin
Adds latitude and longitude columns with a shorthand coordinates property that returns both.

coordinates
Tuple of (latitude, longitude).

has_coordinates
Return True if both latitude and longitude are present.

has_missing_coordinates
Return True if one or both of latitude and longitude are missing.

class coaster.sqlalchemy.mixins.UuidMixin
Provides a uuid attribute that is either a SQL UUID column or an alias to the existing id column if the class
uses UUID primary keys. Also provides hybrid properties uuid_hex, buid and uuid_b58 that provide hex,
URL-safe Base64 and Base58 representations of the uuid column.

buid
Retain buid as a public attribute for backward compatibility

1.18. SQLAlchemy mixin classes 51

Coaster Documentation, Release 0.7.0

uuid_b58
URL-friendly UUID representation, using Base58 with the Bitcoin alphabet

uuid_b64
URL-friendly UUID representation, using URL-safe Base64 (BUID)

uuid_hex
URL-friendly UUID representation as a hex string

class coaster.sqlalchemy.mixins.RoleMixin
Provides methods for role-based access control.

Subclasses must define a __roles__ dictionary with roles and the attributes they have call, read and write
access to:

__roles__ = {
'role_name': {

'call': {'meth1', 'meth2'},
'read': {'attr1', 'attr2'},
'write': {'attr1', 'attr2'},
'grant': {'rel1', 'rel2'},
},

}

The grant key works in reverse: if the actor is present in any of the attributes in the set, they are granted
that role via roles_for(). Attributes must be SQLAlchemy relationships and can be scalar, a collection or
dynamic.

The with_roles() decorator is recommended over __roles__.

access_for(roles=None, actor=None, anchors=(), datasets=None)
Return a proxy object that limits read and write access to attributes based on the actor’s roles.

Warning: If the roles parameter is provided, it overrides discovery of the actor’s roles in both the
current object and related objects. It should only be used when roles are pre-determined and related
objects are not required.

Parameters

• roles (set) – Roles to limit access to (not recommended)

• actor – Limit access to this actor’s roles

• anchors – Retrieve additional roles from anchors

• datasets (tuple) – Limit enumeration to the attributes in the dataset

If a datasets sequence is provided, the first dataset is applied to the current object and subsequent datasets
are applied to objects accessed via relationships. Datasets limit the attributes available via enumeration
when the proxy is cast into a dict or JSON. This can be used to remove unnecessary data or bi-directional
relationships, which JSON can’t handle.

Attributes must be specified in a __datasets__ dictionary on the object:

__datasets__ = {
'primary': {'uuid', 'name', 'title', 'children', 'parent'},
'related': {'uuid', 'name', 'title'}

}

52 Chapter 1. Coaster documentation

https://docs.python.org/2/library/stdtypes.html#set

Coaster Documentation, Release 0.7.0

Objects and related objects can be safely enumerated like this:

proxy = obj.access_for(user, datasets=('primary', 'related'))
proxydict = dict(proxy)
proxyjson = json.dumps(proxy) # This needs a custom JSON encoder

If a dataset includes an attribute the role doesn’t have access to, it will be skipped. If it includes a relation-
ship for which no dataset is specified, it will be rendered as an empty dict.

actors_with(roles, with_role=False)
Return actors who have the specified roles on this object, as an iterator.

Uses: 1. __roles__[role]['granted_by'] 2. __roles__[role]['granted_via']

Subclasses of RoleMixin that have custom role granting logic in roles_for() must provide a match-
ing actors_with() implementation.

Parameters

• roles (set) – Iterable specifying roles to find actors with. May be an ordered type if
ordering is important

• with_role (bool) – If True, yields a tuple of the actor and the role they were found
with. The actor may have more roles, but only the first match is returned

current_access(datasets=None)
Wraps access_for() with current_auth to return a proxy for the currently authenticated user.

Parameters datasets (tuple) – Datasets to limit enumeration to

current_roles
InspectableSet containing currently available roles on this object, using current_auth. Use in
the view layer to inspect for a role being present:

if obj.current_roles.editor: pass

{% if obj.current_roles.editor %}. . . {% endif %}

This property is also available in RoleAccessProxy.

Warning: current_roles maintains a cache for efficient use in a template where it may be consulted
multiple times. It is therefore not safe to use before and after code that modifies role assignment. Use
roles_for() instead, or use current_roles only after roles are changed.

roles_for(actor=None, anchors=())
Return roles available to the given actor or anchors on this object. The data type for both parameters
are intentionally undefined here. Subclasses are free to define them in any way appropriate. Actors and
anchors are assumed to be valid.

The role all is always granted. If actor is specified, the role auth is granted. If not, anon is granted.

Subclasses overriding roles_for() must always call super() to ensure they are receiving the stan-
dard roles. Recommended boilerplate:

def roles_for(self, actor=None, anchors=()):
roles = super().roles_for(actor, anchors)
'roles' is a set. Add more roles here
...
return roles

1.18. SQLAlchemy mixin classes 53

https://docs.python.org/2/library/stdtypes.html#set
https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/functions.html#super

Coaster Documentation, Release 0.7.0

class coaster.sqlalchemy.mixins.RegistryMixin
Adds common registries to a model.

Included:

• forms registry, for WTForms forms

• views registry for view classes and helper functions

• features registry for feature availability test functions.

The forms registry passes the instance to the registered form as an obj keyword parameter. The other registries
pass it as the first positional parameter.

1.19 SQLAlchemy column types

class coaster.sqlalchemy.columns.JsonDict(*args, **kwargs)
Represents a JSON data structure. Usage:

column = Column(JsonDict)

The column will be represented to the database as a JSONB column if the server is PostgreSQL 9.4 or later,
JSON if PostgreSQL 9.2 or 9.3, and TEXT for everything else. The column behaves like a JSON store regardless
of the backing data type.

impl
alias of sqlalchemy.sql.sqltypes.TEXT

load_dialect_impl(dialect)
Return a TypeEngine object corresponding to a dialect.

This is an end-user override hook that can be used to provide differing types depending on the given dialect.
It is used by the TypeDecorator implementation of type_engine() to help determine what type
should ultimately be returned for a given TypeDecorator.

By default returns self.impl.

process_bind_param(value, dialect)
Receive a bound parameter value to be converted.

Subclasses override this method to return the value that should be passed along to the underlying
TypeEngine object, and from there to the DBAPI execute() method.

The operation could be anything desired to perform custom behavior, such as transforming or serializing
data. This could also be used as a hook for validating logic.

This operation should be designed with the reverse operation in mind, which would be the pro-
cess_result_value method of this class.

Parameters

• value – Data to operate upon, of any type expected by this method in the subclass. Can
be None.

• dialect – the Dialect in use.

process_result_value(value, dialect)
Receive a result-row column value to be converted.

Subclasses should implement this method to operate on data fetched from the database.

54 Chapter 1. Coaster documentation

https://docs.sqlalchemy.org/en/14/dialects/mssql.html#sqlalchemy.dialects.mssql.TEXT

Coaster Documentation, Release 0.7.0

Subclasses override this method to return the value that should be passed back to the application, given a
value that is already processed by the underlying TypeEngine object, originally from the DBAPI cursor
method fetchone() or similar.

The operation could be anything desired to perform custom behavior, such as transforming or serializing
data. This could also be used as a hook for validating logic.

Parameters

• value – Data to operate upon, of any type expected by this method in the subclass. Can
be None.

• dialect – the Dialect in use.

This operation should be designed to be reversible by the “process_bind_param” method of this class.

class coaster.sqlalchemy.columns.UUIDType(binary=True, native=True)
Stores a UUID in the database natively when it can and falls back to a BINARY(16) or a CHAR(32) when it
can’t.

from sqlalchemy_utils import UUIDType
import uuid

class User(Base):
__tablename__ = 'user'

Pass `binary=False` to fallback to CHAR instead of BINARY
id = sa.Column(UUIDType(binary=False), primary_key=True)

load_dialect_impl(dialect)
Return a TypeEngine object corresponding to a dialect.

This is an end-user override hook that can be used to provide differing types depending on the given dialect.
It is used by the TypeDecorator implementation of type_engine() to help determine what type
should ultimately be returned for a given TypeDecorator.

By default returns self.impl.

process_bind_param(value, dialect)
Receive a bound parameter value to be converted.

Subclasses override this method to return the value that should be passed along to the underlying
TypeEngine object, and from there to the DBAPI execute() method.

The operation could be anything desired to perform custom behavior, such as transforming or serializing
data. This could also be used as a hook for validating logic.

This operation should be designed with the reverse operation in mind, which would be the pro-
cess_result_value method of this class.

Parameters

• value – Data to operate upon, of any type expected by this method in the subclass. Can
be None.

• dialect – the Dialect in use.

process_literal_param(value, dialect)
Receive a literal parameter value to be rendered inline within a statement.

This method is used when the compiler renders a literal value without using binds, typically within DDL
such as in the “server default” of a column or an expression within a CHECK constraint.

The returned string will be rendered into the output string.

1.19. SQLAlchemy column types 55

Coaster Documentation, Release 0.7.0

New in version 0.9.0.

process_result_value(value, dialect)
Receive a result-row column value to be converted.

Subclasses should implement this method to operate on data fetched from the database.

Subclasses override this method to return the value that should be passed back to the application, given a
value that is already processed by the underlying TypeEngine object, originally from the DBAPI cursor
method fetchone() or similar.

The operation could be anything desired to perform custom behavior, such as transforming or serializing
data. This could also be used as a hook for validating logic.

Parameters

• value – Data to operate upon, of any type expected by this method in the subclass. Can
be None.

• dialect – the Dialect in use.

This operation should be designed to be reversible by the “process_bind_param” method of this class.

python_type
alias of uuid.UUID

class coaster.sqlalchemy.columns.UrlType(schemes=(’http’, ’https’), op-
tional_scheme=False, optional_host=False)

Extension of URLType from SQLAlchemy-Utils that adds basic validation to ensure URLs are well formed.
Parses the value into a furl object, allowing manipulation of

Parameters

• schemes – Valid URL schemes. Use None to allow any scheme, () for no scheme

• optional_scheme – Schemes are optional (allows URLs starting with //)

• optional_host – Allow URLs without a hostname (required for mailto and file
schemes)

impl
alias of sqlalchemy.sql.sqltypes.UnicodeText

process_bind_param(value, dialect)
Receive a bound parameter value to be converted.

Subclasses override this method to return the value that should be passed along to the underlying
TypeEngine object, and from there to the DBAPI execute() method.

The operation could be anything desired to perform custom behavior, such as transforming or serializing
data. This could also be used as a hook for validating logic.

This operation should be designed with the reverse operation in mind, which would be the pro-
cess_result_value method of this class.

Parameters

• value – Data to operate upon, of any type expected by this method in the subclass. Can
be None.

• dialect – the Dialect in use.

process_result_value(value, dialect)
Receive a result-row column value to be converted.

Subclasses should implement this method to operate on data fetched from the database.

56 Chapter 1. Coaster documentation

https://docs.python.org/2/library/uuid.html#uuid.UUID
https://sqlalchemy-utils.readthedocs.io/en/latest/data_types.html#module-sqlalchemy_utils.types.url
https://docs.sqlalchemy.org/en/14/core/type_basics.html#sqlalchemy.types.UnicodeText

Coaster Documentation, Release 0.7.0

Subclasses override this method to return the value that should be passed back to the application, given a
value that is already processed by the underlying TypeEngine object, originally from the DBAPI cursor
method fetchone() or similar.

The operation could be anything desired to perform custom behavior, such as transforming or serializing
data. This could also be used as a hook for validating logic.

Parameters

• value – Data to operate upon, of any type expected by this method in the subclass. Can
be None.

• dialect – the Dialect in use.

This operation should be designed to be reversible by the “process_bind_param” method of this class.

url_parser
alias of furl.furl.furl

1.20 Helper functions

coaster.sqlalchemy.functions.make_timestamp_columns(timezone=False)
Return two columns, created_at and updated_at, with appropriate defaults

coaster.sqlalchemy.functions.failsafe_add(_session, _instance, **filters)
Add and commit a new instance in a nested transaction (using SQL SAVEPOINT), gracefully handling failure
in case a conflicting entry is already in the database (which may occur due to parallel requests causing race
conditions in a production environment with multiple workers).

Returns the instance saved to database if no error occurred, or loaded from database using the provided filters
if an error occurred. If the filters fail to load from the database, the original IntegrityError is re-raised, as it is
assumed to imply that the commit failed because of missing or invalid data, not because of a duplicate entry.

However, when no filters are provided, nothing is returned and IntegrityError is also suppressed as there is no
way to distinguish between data validation failure and an existing conflicting record in the database. Use this
option when failures are acceptable but the cost of verification is not.

Usage: failsafe_add(db.session, instance, **filters) where filters are the parameters
passed to Model.query.filter_by(**filters).one() to load the instance.

You must commit the transaction as usual after calling failsafe_add.

Parameters

• _session – Database session

• _instance – Instance to commit

• filters – Filters required to load existing instance from the database in case the commit
fails (required)

Returns Instance that is in the database

coaster.sqlalchemy.functions.add_primary_relationship(parent, childrel, child, paren-
trel, parentcol)

When a parent-child relationship is defined as one-to-many, add_primary_relationship() lets the par-
ent refer to one child as the primary, by creating a secondary table to hold the reference. Under PostgreSQL, a
trigger is added as well to ensure foreign key integrity.

A SQLAlchemy relationship named parent.childrel is added that makes usage seamless within
SQLAlchemy.

1.20. Helper functions 57

Coaster Documentation, Release 0.7.0

The secondary table is named after the parent and child tables, with _primary appended, in the form
parent_child_primary. This table can be found in the metadata in the parent.metadata.tables
dictionary.

Multi-column primary keys on either parent or child are unsupported at this time.

Parameters

• parent – The parent model (on which this relationship will be added)

• childrel – The name of the relationship to the child that will be added

• child – The child model

• parentrel (str) – Name of the existing relationship on the child model that refers back
to the parent model

• parentcol (str) – Name of the existing table column on the child model that refers back
to the parent model

Returns Secondary table that was created

coaster.sqlalchemy.functions.auto_init_default(column)
Set the default value for a column when it’s first accessed rather than first committed to the database.

1.21 Role-based access control

Coaster provides a RoleMixin class that can be used to define role-based access control to the attributes and methods
of any SQLAlchemy model. RoleMixin is a base class for BaseMixin and applies to all derived classes. Access
is defined as one of ‘call’ (for methods), ‘read’ or ‘write’ (both for attributes).

Roles are freeform string tokens. A model may freely define and grant roles to actors (users and sometimes client
apps) based on internal criteria. The following standard tokens are recommended. Required tokens are granted by
RoleMixin itself.

1. all: Any actor, authenticated or anonymous (required)

2. anon: Anonymous actor (required)

3. auth: Authenticated actor (required)

4. creator: The creator of an object (may or may not be the current owner)

5. owner: The current owner of an object

6. author: Author of the object’s contents (all creators are authors)

7. editor: Someone authorised to edit the object

8. reader: Someone authorised to read the object (assuming it’s not public)

9. subject: User who is described by an object, typically having limited rights

Example use:

from flask import Flask
from flask_sqlalchemy import SQLAlchemy
from coaster.sqlalchemy import BaseMixin, with_roles

app = Flask(__name__)
db = SQLAlchemy(app)

(continues on next page)

58 Chapter 1. Coaster documentation

https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#str

Coaster Documentation, Release 0.7.0

(continued from previous page)

class ColumnMixin:
'''
Mixin class that offers some columns to the RoleModel class below,
demonstrating two ways to use `with_roles`.
'''
@with_roles(rw={'owner'})
def mixed_in1(cls):

return db.Column(db.Unicode(250))

@declared_attr
def mixed_in2(cls):

return with_roles(db.Column(db.Unicode(250)),
rw={'owner'})

class RoleModel(ColumnMixin, RoleMixin, db.Model):
__tablename__ = 'role_model'

The low level approach is to declare roles all at once.
'all' is a special role that is always granted from the base class.
Avoid this approach in a parent or mixin class as definitions will
be lost if the subclass does not copy `__roles__`.

__roles__ = {
'all': {

'read': {'id', 'name', 'title'},
},
'owner': {

'granted_by': ['user'],
},

}

Recommended for parent and mixin classes: annotate roles on the attributes
using `with_roles`. These annotations are added to `__roles__` when
SQLAlchemy configures mappers.

id = db.Column(db.Integer, primary_key=True)
name = with_roles(db.Column(db.Unicode(250)),

rw={'owner'}) # Specify read+write access

user_id = db.Column(None, db.ForeignKey('user.id'), nullable=False)
user = with_roles(

db.relationship(User),
grants={'owner'}, # Use `grants` here or `granted_by` in `__roles__`
)

`with_roles` can also be called later. This is required for
properties, where roles must be assigned after the property is
fully described:

_title = db.Column('title', db.Unicode(250))

@property
def title(self):

return self._title

@title.setter
(continues on next page)

1.21. Role-based access control 59

Coaster Documentation, Release 0.7.0

(continued from previous page)

def title(self, value):
self._title = value

This grants 'owner' and 'editor' write but not read access
title = with_roles(title, write={'owner', 'editor'})

`with_roles` can be used as a decorator on methods, in which case
access is controlled with the 'call' action.

@with_roles(call={'all'})
def hello(self):

return "Hello!"

`RoleMixin` will grant roles by examining relationships specified in the
`granted_by` list under each role in `__roles__`. The `actor` parameter
to `roles_for` must be present in the relationship. You can augment this
by providing a custom `roles_for` method:

def roles_for(self, actor=None, anchors=()):
Calling super gives us a LazyRoleSet with the standard roles
and with lazy evaluation of of other roles from `granted_by`
roles = super().roles_for(actor, anchors)

We can manually add a role to override lazy evaluation
if 'owner-secret' in anchors:

roles.add('owner')
return roles

class coaster.sqlalchemy.roles.RoleGrantABC
Base class for an object that grants roles to an actor

offered_roles
Roles offered by this object

class coaster.sqlalchemy.roles.LazyRoleSet(obj, actor, initial=())
Set that provides lazy evaluations for whether a role is present

add(value)
Add role value to the set.

copy()
Return a shallow copy of the LazyRoleSet.

discard(value)
Remove role value from the set if it is present.

has_any(roles)
Convenience method for checking if any of the given roles is present in the set.

Equivalent of evaluating using either of these approaches:

1. not roles.isdisjoint(lazy_role_set)

2. any(role in lazy_role_set for role in roles)

This implementation optimizes for cached roles before evaluating role granting sources that may cause a
database hit.

class coaster.sqlalchemy.roles.RoleAccessProxy(obj, roles, actor, anchors, datasets)
A proxy interface that wraps an object and provides pass-through read and write access to attributes that the

60 Chapter 1. Coaster documentation

Coaster Documentation, Release 0.7.0

specified roles have access to. Consults the __roles__ dictionary on the object for determining which roles
can access which attributes. Provides both attribute and dictionary interfaces.

Note that if the underlying attribute is a callable and is specified with the ‘call’ action, it will be available via
attribute access but not dictionary access.

RoleAccessProxy is typically accessed directly from the target object via access_for() (from
RoleMixin).

Example:

proxy = RoleAccessProxy(obj, roles={'writer'})
proxy.attr1
proxy.attr1 = 'new value'
proxy['attr2'] = 'new value'
dict(proxy)

Parameters

• obj – The object that should be wrapped with the proxy

• roles – A set of roles to determine what attributes are accessible

• actor – The actor this proxy has been constructed for

• anchors – The anchors this proxy has been constructed with

• datasets – Datasets to limit attribute enumeration to

The actor and anchors parameters are not used by the proxy, but are used to construct proxies for objects
accessed via relationships.

class coaster.sqlalchemy.roles.DynamicAssociationProxy(rel, attr)
Association proxy for dynamic relationships. Use this instead of SQLAlchemy’s association_proxy when the
underlying relationship uses lazy=’dynamic’.

Usage:

Assuming a relationship like this:
Document.child_relationship = db.relationship(ChildDocument, lazy='dynamic')

Proxy to an attribute on the target of the relationship:
Document.child_attributes = DynamicAssociationProxy(

'child_relationship', 'attribute')

This proxy does not provide access to the query capabilities of dynamic relationships. It merely optimises for
containment queries. A query like this:

Document.child_relationship.filter_by(attribute=value).exists()

Can be reduced to this:

value in Document.child_attributes

Parameters

• rel (str) – Relationship name (must use lazy='dynamic')

• attr (str) – Attribute on the target of the relationship

1.21. Role-based access control 61

https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#str

Coaster Documentation, Release 0.7.0

class coaster.sqlalchemy.roles.RoleMixin
Provides methods for role-based access control.

Subclasses must define a __roles__ dictionary with roles and the attributes they have call, read and write
access to:

__roles__ = {
'role_name': {

'call': {'meth1', 'meth2'},
'read': {'attr1', 'attr2'},
'write': {'attr1', 'attr2'},
'grant': {'rel1', 'rel2'},
},

}

The grant key works in reverse: if the actor is present in any of the attributes in the set, they are granted
that role via roles_for(). Attributes must be SQLAlchemy relationships and can be scalar, a collection or
dynamic.

The with_roles() decorator is recommended over __roles__.

access_for(roles=None, actor=None, anchors=(), datasets=None)
Return a proxy object that limits read and write access to attributes based on the actor’s roles.

Warning: If the roles parameter is provided, it overrides discovery of the actor’s roles in both the
current object and related objects. It should only be used when roles are pre-determined and related
objects are not required.

Parameters

• roles (set) – Roles to limit access to (not recommended)

• actor – Limit access to this actor’s roles

• anchors – Retrieve additional roles from anchors

• datasets (tuple) – Limit enumeration to the attributes in the dataset

If a datasets sequence is provided, the first dataset is applied to the current object and subsequent datasets
are applied to objects accessed via relationships. Datasets limit the attributes available via enumeration
when the proxy is cast into a dict or JSON. This can be used to remove unnecessary data or bi-directional
relationships, which JSON can’t handle.

Attributes must be specified in a __datasets__ dictionary on the object:

__datasets__ = {
'primary': {'uuid', 'name', 'title', 'children', 'parent'},
'related': {'uuid', 'name', 'title'}

}

Objects and related objects can be safely enumerated like this:

proxy = obj.access_for(user, datasets=('primary', 'related'))
proxydict = dict(proxy)
proxyjson = json.dumps(proxy) # This needs a custom JSON encoder

If a dataset includes an attribute the role doesn’t have access to, it will be skipped. If it includes a relation-
ship for which no dataset is specified, it will be rendered as an empty dict.

62 Chapter 1. Coaster documentation

https://docs.python.org/2/library/stdtypes.html#set

Coaster Documentation, Release 0.7.0

actors_with(roles, with_role=False)
Return actors who have the specified roles on this object, as an iterator.

Uses: 1. __roles__[role]['granted_by'] 2. __roles__[role]['granted_via']

Subclasses of RoleMixin that have custom role granting logic in roles_for() must provide a match-
ing actors_with() implementation.

Parameters

• roles (set) – Iterable specifying roles to find actors with. May be an ordered type if
ordering is important

• with_role (bool) – If True, yields a tuple of the actor and the role they were found
with. The actor may have more roles, but only the first match is returned

current_access(datasets=None)
Wraps access_for() with current_auth to return a proxy for the currently authenticated user.

Parameters datasets (tuple) – Datasets to limit enumeration to

current_roles
InspectableSet containing currently available roles on this object, using current_auth. Use in
the view layer to inspect for a role being present:

if obj.current_roles.editor: pass

{% if obj.current_roles.editor %}. . . {% endif %}

This property is also available in RoleAccessProxy .

Warning: current_roles maintains a cache for efficient use in a template where it may be consulted
multiple times. It is therefore not safe to use before and after code that modifies role assignment. Use
roles_for() instead, or use current_roles only after roles are changed.

roles_for(actor=None, anchors=())
Return roles available to the given actor or anchors on this object. The data type for both parameters
are intentionally undefined here. Subclasses are free to define them in any way appropriate. Actors and
anchors are assumed to be valid.

The role all is always granted. If actor is specified, the role auth is granted. If not, anon is granted.

Subclasses overriding roles_for() must always call super() to ensure they are receiving the stan-
dard roles. Recommended boilerplate:

def roles_for(self, actor=None, anchors=()):
roles = super().roles_for(actor, anchors)
'roles' is a set. Add more roles here
...
return roles

coaster.sqlalchemy.roles.with_roles(obj=None, rw=None, call=None, read=None,
write=None, grants=None, grants_via=None,
datasets=None)

Convenience function and decorator to define roles on an attribute. Only works with RoleMixin, which reads
the annotations made by this function and populates __roles__.

Examples:

1.21. Role-based access control 63

https://docs.python.org/2/library/stdtypes.html#set
https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/functions.html#super

Coaster Documentation, Release 0.7.0

id = db.Column(Integer, primary_key=True)
with_roles(id, read={'all'})

title = with_roles(db.Column(db.UnicodeText), read={'all'})

@with_roles(read={'all'})
@hybrid_property
def url_id(self):

return str(self.id)

When used with properties, with_roles must always be applied after the property is fully described:

@property
def title(self):

return self._title

@title.setter
def title(self, value):

self._title = value

Either of the following is fine, since with_roles annotates objects
instead of wrapping them. The return value can be discarded if it's
already present on the host object:

title = with_roles(title, read={'all'}, write={'owner', 'editor'})
with_roles(title, read={'all'}, write={'owner', 'editor'})

Parameters

• rw (set) – Roles which get read and write access to the decorated attribute

• call (set) – Roles which get call access to the decorated method

• read (set) – Roles which get read access to the decorated attribute

• write (set) – Roles which get write access to the decorated attribute

• grants (set) – The decorated attribute contains actors with the given roles

• grants_via (dict) – The decorated attribute is a relationship to another object type
which contains one or more actors who are granted roles here

• datasets (set) – Datasets to include the attribute in

grants_via is typically used like this:

class RoleModel(db.Model):
user_id = db.Column(None, db.ForeignKey('user.id'))
user = db.relationship(UserModel)

document_id = db.Column(None, db.ForeignKey('document.id'))
document = db.relationship(DocumentModel)

DocumentModel.rolemodels = with_roles(db.relationship(RoleModel),
grants_via={'user': {'role1', 'role2'}})

In this example, a user gets roles ‘role1’ and ‘role2’ on DocumentModel via the secondary RoleModel. Grants
are recorded in __roles__['role1']['granted_via'] and are honoured by the LazyRoleSet used
in roles_for().

64 Chapter 1. Coaster documentation

https://docs.python.org/2/library/stdtypes.html#set
https://docs.python.org/2/library/stdtypes.html#set
https://docs.python.org/2/library/stdtypes.html#set
https://docs.python.org/2/library/stdtypes.html#set
https://docs.python.org/2/library/stdtypes.html#set
https://docs.python.org/2/library/stdtypes.html#dict
https://docs.python.org/2/library/stdtypes.html#set

Coaster Documentation, Release 0.7.0

grants_via supports an additional advanced definition for when the role granting model has variable roles
and offers them via a property named offered_roles:

class RoleModel(db.Model):
user_id = db.Column(None, db.ForeignKey('user.id'))
user = db.relationship(UserModel)

has_role1 = db.Column(db.Boolean)
has_role2 = db.Column(db.Boolean)

document_id = db.Column(None, db.ForeignKey('document.id'))
document = db.relationship(DocumentModel)

@property
def offered_roles(self):

roles = set()
if self.has_role1:

roles.add('role1')
if self.has_role2:

roles.add('role2')
return roles

DocumentModel.rolemodels = with_roles(db.relationship(RoleModel),
grants_via={'user': {

'role1': 'renamed_role1,
'role2': {'renamed_role2', 'also_role2'}

}}
)

coaster.sqlalchemy.roles.declared_attr_roles(rw=None, call=None, read=None,
write=None)

Equivalent of with_roles() for use with @declared_attr:

@declared_attr
@declared_attr_roles(read={'all'})
def my_column(cls):

return Column(Integer)

While with_roles() is always the outermost decorator on properties and functions,
declared_attr_roles() must appear below @declared_attr to work correctly.

Deprecated since version 0.6.1: Use with_roles() instead. It works for declared_attr since 0.6.1

1.22 SQLAlchemy attribute annotations

Annotations are strings attached to attributes that serve as a programmer reference on how those attributes are meant
to be used. They can be used to indicate that a column’s value should be immutable and should never change, or
that it’s a cached copy of a value from another source that can be safely discarded in case of a conflict.

This module’s exports may be imported via coaster.sqlalchemy .

Sample usage:

from coaster.db import db
from coaster.sqlalchemy import annotation_wrapper, immutable

natural_key = annotation_wrapper('natural_key', "Natural key for this model")
(continues on next page)

1.22. SQLAlchemy attribute annotations 65

Coaster Documentation, Release 0.7.0

(continued from previous page)

class MyModel(db.Model):
__tablename__ = 'my_model'
id = immutable(db.Column(db.Integer, primary_key=True))
name = natural_key(db.Column(db.Unicode(250), unique=True))

@classmethod
def get(cls, **kwargs):

for key in kwargs:
if key in cls.__column_annotations__[natural_key.name]:

return cls.query.filter_by(**{key: kwargs[key]}).one_or_none()

Annotations are saved to the model’s class as a __column_annotations__ dictionary, mapping annotation names
to a list of attribute names, and to a reverse lookup __column_annotations_by_attr__ of attribute names to
annotations.

coaster.sqlalchemy.annotations.annotation_wrapper(annotation, doc=None)
Define an annotation, which can be applied to attributes in a database model.

1.23 Immutable annotation

coaster.sqlalchemy.immutable_annotation.immutable(attr)
Marks a column as immutable once set. Only blocks direct changes; columns may still be updated via relation-
ships or SQL

coaster.sqlalchemy.immutable_annotation.cached(attr)
Marks the column’s contents as a cached value from another source

exception coaster.sqlalchemy.immutable_annotation.ImmutableColumnError(class_name,
col-
umn_name,
old_value,
new_value,
mes-
sage=None)

Exception raised when an immutable column is set.

1.24 Model helper registry

Provides a Registry type and a RegistryMixin base class with three registries, used by other mixin classes.

Helper classes such as forms and views can be registered to the model and later accessed from an instance:

class MyModel(BaseMixin, db.Model):
...

class MyForm(Form):
...

class MyView(ModelView):
...

(continues on next page)

66 Chapter 1. Coaster documentation

Coaster Documentation, Release 0.7.0

(continued from previous page)

MyModel.forms.main = MyForm
MyModel.views.main = MyView

When accessed from an instance, the registered form or view will receive the instance as an obj parameter:

doc = MyModel()
doc.forms.main() == MyForm(obj=doc)
doc.views.main() == MyView(obj=doc)

The name main is a recommended default, but an app that has separate forms for new and edit actions could use
those names instead.

class coaster.sqlalchemy.registry.Registry(param: Optional[str] = None, property: bool
= False, cached_property: bool = False)

Container for items registered to a model.

clear_cache_for(obj)→ bool
Clear cached instance registry from an object.

Returns True if cache was cleared, False if it wasn’t needed.

class coaster.sqlalchemy.registry.InstanceRegistry(registry, obj)
Container for accessing registered items from an instance of the model.

Used internally by Registry . Returns a partial that will pass in an obj parameter when called.

clear_cache()
Clear cache from this registry.

class coaster.sqlalchemy.registry.RegistryMixin
Adds common registries to a model.

Included:

• forms registry, for WTForms forms

• views registry for view classes and helper functions

• features registry for feature availability test functions.

The forms registry passes the instance to the registered form as an obj keyword parameter. The other registries
pass it as the first positional parameter.

1.25 Enhanced query and custom comparators

class coaster.sqlalchemy.comparators.Query(entities, session=None)
Extends flask_sqlalchemy.BaseQuery to add additional helper methods.

isempty()
Returns the equivalent of not bool(query.count()) but using an efficient SQL EXISTS function,
so the database stops counting after the first result is found.

notempty()
Returns the equivalent of bool(query.count()) but using an efficient SQL EXISTS function, so the
database stops counting after the first result is found.

one_or_404()
Extends one_or_none() to raise a 404 if no result is found. This method offers a safety net over

1.25. Enhanced query and custom comparators 67

Coaster Documentation, Release 0.7.0

first_or_404() as it helps identify poorly specified queries that could have returned more than one
result.

class coaster.sqlalchemy.comparators.SplitIndexComparator(expression, splitin-
dex=None)

Base class for comparators that support splitting a string and comparing with one of the split values.

in_(other)
Implement the in operator.

In a column context, produces the clause column IN <other>.

The given parameter other may be:

• A list of literal values, e.g.:

stmt.where(column.in_([1, 2, 3]))

In this calling form, the list of items is converted to a set of bound parameters the same length as the
list given:

WHERE COL IN (?, ?, ?)

• A list of tuples may be provided if the comparison is against a tuple_() containing multiple ex-
pressions:

from sqlalchemy import tuple_
stmt.where(tuple_(col1, col2).in_([(1, 10), (2, 20), (3, 30)]))

• An empty list, e.g.:

stmt.where(column.in_([]))

In this calling form, the expression renders an “empty set” expression. These expressions are tailored
to individual backends and are generally trying to get an empty SELECT statement as a subquery.
Such as on SQLite, the expression is:

WHERE col IN (SELECT 1 FROM (SELECT 1) WHERE 1!=1)

Changed in version 1.4: empty IN expressions now use an execution-time generated SELECT sub-
query in all cases.

• A bound parameter, e.g. bindparam(), may be used if it includes the :param-
ref:‘.bindparam.expanding‘ flag:

stmt.where(column.in_(bindparam('value', expanding=True)))

In this calling form, the expression renders a special non-SQL placeholder expression that looks like:

WHERE COL IN ([EXPANDING_value])

This placeholder expression is intercepted at statement execution time to be converted into the variable
number of bound parameter form illustrated earlier. If the statement were executed as:

connection.execute(stmt, {"value": [1, 2, 3]})

The database would be passed a bound parameter for each value:

WHERE COL IN (?, ?, ?)

68 Chapter 1. Coaster documentation

https://flask-sqlalchemy.palletsprojects.com/en/2.x/api/#flask_sqlalchemy.BaseQuery.first_or_404

Coaster Documentation, Release 0.7.0

New in version 1.2: added “expanding” bound parameters

If an empty list is passed, a special “empty list” expression, which is specific to the database in use, is
rendered. On SQLite this would be:

WHERE COL IN (SELECT 1 FROM (SELECT 1) WHERE 1!=1)

New in version 1.3: “expanding” bound parameters now support empty lists

• a _expression.select() construct, which is usually a correlated scalar select:

stmt.where(
column.in_(

select(othertable.c.y).
where(table.c.x == othertable.c.x)

)
)

In this calling form, ColumnOperators.in_() renders as given:

WHERE COL IN (SELECT othertable.y
FROM othertable WHERE othertable.x = table.x)

Parameters other – a list of literals, a _expression.select() construct, or a
bindparam() construct that includes the :paramref:‘.bindparam.expanding‘ flag set to
True.

class coaster.sqlalchemy.comparators.SqlSplitIdComparator(expression, splitin-
dex=None)

Allows comparing an id value with a column, useful mostly because of the splitindex feature, which splits an
incoming string along the - character and picks one of the splits for comparison.

class coaster.sqlalchemy.comparators.SqlUuidHexComparator(expression, splitin-
dex=None)

Allows comparing UUID fields with hex representations of the UUID

class coaster.sqlalchemy.comparators.SqlUuidB64Comparator(expression, splitin-
dex=None)

Allows comparing UUID fields with URL-safe Base64 (BUID) representations of the UUID

class coaster.sqlalchemy.comparators.SqlUuidB58Comparator(expression, splitin-
dex=None)

Allows comparing UUID fields with Base58 representations of the UUID

1.26 States and transitions

StateManager wraps a SQLAlchemy column with a LabeledEnum to facilitate state inspection, and to control
state change via transitions. Sample usage:

class MY_STATE(LabeledEnum):
DRAFT = (0, "Draft")
PENDING = (1, 'pending', "Pending")
PUBLISHED = (2, "Published")

UNPUBLISHED = {DRAFT, PENDING}

(continues on next page)

1.26. States and transitions 69

Coaster Documentation, Release 0.7.0

(continued from previous page)

Classes can have more than one state variable
class REVIEW_STATE(LabeledEnum):

UNSUBMITTED = (0, "Unsubmitted")
PENDING = (1, "Pending")
REVIEWED = (2, "Reviewed")

class MyPost(BaseMixin, db.Model):
__tablename__ = 'my_post'

The underlying state value columns
(more than one state variable can exist)
_state = db.Column('state', db.Integer,

StateManager.check_constraint('state', MY_STATE),
default=MY_STATE.DRAFT, nullable=False)

_reviewstate = db.Column('reviewstate', db.Integer,
StateManager.check_constraint('state', REVIEW_STATE),
default=REVIEW_STATE.UNSUBMITTED, nullable=False)

The state managers controlling the columns
state = StateManager('_state', MY_STATE, doc="The post's state")
reviewstate = StateManager('_reviewstate', REVIEW_STATE,

doc="Reviewer's state")

Datetime for the additional states and transitions
datetime = db.Column(db.DateTime, default=datetime.utcnow, nullable=False)

Additional states:

RECENT = PUBLISHED + in the last one hour
state.add_conditional_state('RECENT', state.PUBLISHED,

lambda post: post.datetime > datetime.utcnow() - timedelta(hours=1))

REDRAFTABLE = DRAFT or PENDING or RECENT
state.add_state_group('REDRAFTABLE',

state.DRAFT, state.PENDING, state.RECENT)

Transitions change FROM one state TO another, and can have
an additional if_ condition (a callable) that must return True
@state.transition(state.DRAFT, state.PENDING, if_=reviewstate.UNSUBMITTED)
def submit(self):

pass

Transitions can coordinate across state managers. All of them
must be in a valid FROM state for the transition to be available.
Transitions can also specify arbitrary metadata such as this `title`
attribute (on any of the decorators). These are made available in a
`data` dictionary, accessible here as `publish.data`
@state.transition(state.UNPUBLISHED, state.PUBLISHED, title="Publish")
@reviewstate.transition(reviewstate.UNSUBMITTED, reviewstate.PENDING)
def publish(self):

A transition can do additional housekeeping
self.datetime = datetime.utcnow()

A transition can use a conditional state. The condition is evaluated
before the transition can proceed
@state.transition(state.RECENT, state.PENDING)

(continues on next page)

70 Chapter 1. Coaster documentation

Coaster Documentation, Release 0.7.0

(continued from previous page)

@reviewstate.transition(reviewstate.PENDING, reviewstate.UNSUBMITTED)
def undo(self):

pass

Transitions can be defined FROM a group of states, but the TO
state must always be an individual state
@state.transition(state.REDRAFTABLE, state.DRAFT)
def redraft(self):

pass

Transitions can abort without changing state, with or without raising
an exception to the caller
@state.transition(state.REDRAFTABLE, state.DRAFT)
def faulty_transition_examples(self):

Cancel the transition, but don't raise an exception to the caller
raise AbortTransition()
Cancel the transition and return a result to the caller
raise AbortTransition('failed')
Need to return a data structure? That works as well
raise AbortTransition((False, 'faulty_failure'))
raise AbortTransition({'status': 'error', 'error': 'faulty_failure'})
If any other exception is raised, it is passed up to the caller
raise ValueError("Faulty transition")

The requires decorator specifies a transition that does not change
state. It can be used to limit a method's availability
@state.requires(state.PUBLISHED)
def send_email_alert(self):

pass

1.26.1 Defining states and transitions

Adding a StateManager to the class links the underlying column (specified as a string) to the LabeledEnum
(specified as an object). The StateManager is read-only and state can only be mutated via transitions. The
LabeledEnum is not required after this point. All symbol names in it are available as attributes on the state manager
henceforth (as instances of ManagedState).

Conditional states can be defined with add_conditional_state() as a combination of an existing state and
a validator that receives the object (the instance of the class the StateManager is present on). This can be used to
evaluate for additional conditions. For example, to distinguish between a static “published” state and a dynamic
“recently published” state. add_conditional_state() also takes an optional class_validator parameter
that is used for queries against the class (see below for query examples).

State groups can be defined with add_state_group(). These are similar to grouped values in a LabeledEnum,
but can also contain conditional states, and are stored as instances of ManagedStateGroup. Grouped values in a
LabeledEnum are more efficient for testing state against, so those should be preferred if the group does not contain
a conditional state.

Transitions connect one managed state or group to another state (but not group). Transitions are defined as methods
and decorated with transition(), which transforms them into instances of StateTransition, a callable class.
If the transition raises an exception, the state change is aborted. Transitions may also abort without changing state
using AbortTransition. Transitions have two additional attributes, is_available, a boolean property which
indicates if the transition is currently available, and data, a dictionary that contains all additional parameters passed
to the transition() decorator.

Transitions can be chained to coordinate a state change across state managers if the class has more than one. All state

1.26. States and transitions 71

Coaster Documentation, Release 0.7.0

managers must be in a valid from state for the transition to be available. A dictionary of currently available transitions
can be obtained from the state manager using the transitions() method.

1.26.2 Queries

The current state of the object can be retrieved by calling the state attribute or reading its value attribute:

post = MyPost(_state=MY_STATE.DRAFT)
post.state() == MY_STATE.DRAFT
post.state.value == MY_STATE.DRAFT

The label associated with the state value can be accessed from the label attribute:

post.state.label == "Draft" # This is the string label from MY_STATE.DRAFT
post.submit() # Change state from DRAFT to PENDING
post.state.label.name == 'pending' # Is the NameTitle tuple from MY_STATE.PENDING
post.state.label.title == "Pending" # The title part of NameTitle

States can be tested by direct reference using the names they were originally defined with in the LabeledEnum:

post.state.DRAFT # True
post.state.is_draft # True (is_* attrs are lowercased aliases to states)
post.state.PENDING # False (since it's a draft)
post.state.UNPUBLISHED # True (grouped state values work as expected)
post.publish() # Change state from DRAFT to PUBLISHED
post.state.RECENT # True (calls the validator if the base state matches)

States can also be used for database queries when accessed from the class:

Generates MyPost._state == MY_STATE.DRAFT
MyPost.query.filter(MyPost.state.DRAFT)

Generates MyPost._state.in_(MY_STATE.UNPUBLISHED)
MyPost.query.filter(MyPost.state.UNPUBLISHED)

Generates and_(MyPost._state == MY_STATE.PUBLISHED,
MyPost.datetime > datetime.utcnow() - timedelta(hours=1))
MyPost.query.filter(MyPost.state.RECENT)

This works because StateManager, ManagedState and ManagedStateGroup behave in three different
ways, depending on context:

1. During class definition, the state manager returns the managed state. All methods on the state manager recognise
these managed states and handle them appropriately.

2. After class definition, the state manager returns the result of calling the managed state instance. If accessed via
the class, the managed state returns a SQLAlchemy filter condition.

3. After class definition, if accessed via an instance, the managed state returns itself wrapped in
ManagedStateWrapper (which holds context for the instance). This is an object that evaluates to True if
the state is active, False otherwise. It also provides pass-through access to all attributes of the managed state.

States can be changed via transitions, defined as methods with the transition() decorator. They add more power
and safeguards over direct state value changes:

1. Original and final states can be specified, prohibiting arbitrary state changes.

2. The transition method can do additional validation and housekeeping.

72 Chapter 1. Coaster documentation

Coaster Documentation, Release 0.7.0

3. Combined with the with_roles() decorator and RoleMixin, transitions provide access control for state
changes.

4. Signals are raised before and after a successful transition, or in case of failures, allowing for the attempts to be
logged.

class coaster.sqlalchemy.statemanager.StateManager(propname, lenum, doc=None)
Wraps a property with a LabeledEnum to facilitate state inspection and control state changes.

This is the main export of this module.

Parameters

• propname (str) – Name of the property that is to be wrapped

• lenum (LabeledEnum) – The LabeledEnum containing valid values

• doc (str) – Optional docstring

add_conditional_state(name, state, validator, class_validator=None, cache_for=None, la-
bel=None)

Add a conditional state that combines an existing state with a validator that must also pass. The validator
receives the object on which the property is present as a parameter.

Parameters

• name (str) – Name of the new state

• state (ManagedState) – Existing state that this is based on

• validator – Function that will be called with the host object as a parameter

• class_validator – Function that will be called when the state is queried on the class
instead of the instance. Falls back to validator if not specified. Receives the class as
the parameter

• cache_for – Integer or function that indicates how long validator’s result can be
cached (not applicable to class_validator). None implies no cache, 0 implies in-
definite cache (until invalidated by a transition) and any other integer is the number of
seconds for which to cache the assertion

• label – Label for this state (string or 2-tuple)

TODO: cache_for’s implementation is currently pending a test case demonstrating how it will be used.

add_state_group(name, *states)
Add a group of managed states. Groups can be specified directly in the LabeledEnum. This method
is only useful for grouping a conditional state with existing states. It cannot be used to form a group of
groups.

Parameters

• name (str) – Name of this group

• states – ManagedState instances to be grouped together

static check_constraint(column, lenum, **kwargs)
Returns a SQL CHECK constraint string given a column name and a LabeledEnum.

Alembic may not detect the CHECK constraint when autogenerating migrations, so you may need to do
this manually using the Python console to extract the SQL string:

from coaster.sqlalchemy import StateManager
from your_app.models import YOUR_ENUM

(continues on next page)

1.26. States and transitions 73

https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#str

Coaster Documentation, Release 0.7.0

(continued from previous page)

print str(StateManager.check_constraint('your_column', YOUR_ENUM).sqltext)

Parameters

• column (str) – Column name

• lenum (LabeledEnum) – LabeledEnum to retrieve valid values from

• kwargs – Additional options passed to CheckConstraint

requires(from_, if_=None, **data)
Decorates a method that may be called if the given state is currently active. Registers a transition internally,
but does not change the state.

Parameters

• from – Required state to allow this call (can be a state group)

• if – Validator(s) that, given the object, must all return True for the call to proceed

• data – Additional metadata, stored on the StateTransition object as a data attribute

transition(from_, to, if_=None, **data)
Decorates a method to transition from one state to another. The decorated method can accept any necessary
parameters and perform additional processing, or raise an exception to abort the transition. If it returns
without an error, the state value is updated automatically. Transitions may also abort without raising an
exception using AbortTransition.

Parameters

• from – Required state to allow this transition (can be a state group)

• to – The state of the object after this transition (automatically set if no exception is raised)

• if – Validator(s) that, given the object, must all return True for the transition to proceed

• data – Additional metadata, stored on the StateTransition object as a data attribute

class coaster.sqlalchemy.statemanager.ManagedState(name, statemanager, value,
label=None, validator=None,
class_validator=None,
cache_for=None)

Represents a state managed by a StateManager. Do not use this class directly. Use
add_conditional_state() instead.

is_conditional
This is a conditional state

is_direct
This is a direct state (scalar state without a condition)

is_scalar
This is a scalar state (not a group of states, and may or may not have a condition)

class coaster.sqlalchemy.statemanager.ManagedStateGroup(name, statemanager,
states)

Represents a group of managed states in a StateManager. Do not use this class directly. Use
add_state_group() instead.

74 Chapter 1. Coaster documentation

https://docs.python.org/2/library/functions.html#str

Coaster Documentation, Release 0.7.0

class coaster.sqlalchemy.statemanager.StateTransition(func, statemanager, from_, to,
if_=None, data=None)

Helper for transitions from one state to another. Do not use this class directly. Use the StateManager.
transition() decorator instead, which creates instances of this class.

To access the decorated function with help(), use help(obj.func).

class coaster.sqlalchemy.statemanager.StateManagerWrapper(statemanager, obj:
Optional[T], cls:
Optional[Type[T]])

Wraps StateManager with the context of the containing object. Automatically constructed when a
StateManager is accessed from either a class or an instance.

bestmatch()
Best matching current scalar state (direct or conditional), only applicable when accessed via an instance.

current()
All states and state groups that are currently active.

group(items, keep_empty=False)
Given an iterable of instances, groups them by state using ManagedState instances as dictionary keys.
Returns a dict that preserves the order of states from the source LabeledEnum.

Parameters keep_empty (bool) – If True, empty states are included in the result

label
Label for the current state’s value (using bestmatch()).

transitions(current=True)
Returns available transitions for the current state, as a dictionary of name:
StateTransitionWrapper.

Parameters current (bool) – Limit to transitions available in obj. current_access()

transitions_for(roles=None, actor=None, anchors=())
For use on RoleMixin classes: returns currently available transitions for the specified roles or actor as a
dictionary of name: StateTransitionWrapper.

value
The current state value.

class coaster.sqlalchemy.statemanager.ManagedStateWrapper(mstate, obj, cls=None)
Wraps a ManagedState or ManagedStateGroup with an object or class, and otherwise provides trans-
parent access to contents.

This class is automatically constructed by StateManager.

class coaster.sqlalchemy.statemanager.StateTransitionWrapper(statetransition,
obj)

Wraps StateTransition with the context of the object it is accessed from. Automatically constructed by
StateTransition.

data
Dictionary containing all additional parameters to the transition() decorator.

is_available
Property that indicates whether this transition is currently available.

1.26. States and transitions 75

https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/functions.html#bool

Coaster Documentation, Release 0.7.0

exception coaster.sqlalchemy.statemanager.StateTransitionError(description:
Optional[str]
= None, re-
sponse: Op-
tional[Response]
= None)

Raised if a transition is attempted from a non-matching state

exception coaster.sqlalchemy.statemanager.AbortTransition(result=None)
Transitions may raise AbortTransition to return without changing state. The parameter to this exception
is returned as the transition’s result.

This exception is a signal to StateTransition and will not be raised to the transition’s caller.

Parameters result – Value to return to the transition’s caller

coaster.sqlalchemy.statemanager.transition_error = <blinker.base.NamedSignal object at 0x7f6999701d50; 'transition-error'>
Signal raised when a transition fails validation

coaster.sqlalchemy.statemanager.transition_before = <blinker.base.NamedSignal object at 0x7f6999701e10; 'transition-before'>
Signal raised before a transition (after validation)

coaster.sqlalchemy.statemanager.transition_after = <blinker.base.NamedSignal object at 0x7f6999701e50; 'transition-after'>
Signal raised after a successful transition

coaster.sqlalchemy.statemanager.transition_exception = <blinker.base.NamedSignal object at 0x7f6999701e90; 'transition-exception'>
Signal raised when a transition raises an exception

1.27 Database session and instance

Coaster provides an instance of Flask-SQLAlchemy. If your app has models distributed across modules, you can
use coaster’s instance instead of creating a new module solely for a shared dependency. Some Hasgeek libraries like
nodular and Flask-Commentease depend on this instance for their models.

coaster.db.db
Instance of SQLAlchemy

Caution: This instance is process-global. Your database models will be shared across all apps running in
the same process. Do not run unrelated apps in the same process.

1.28 Natural language processing

Provides a wrapper around NLTK to extract named entities from HTML text:

from coaster.utils import text_blocks
from coaster.nlp import extract_named_entities

html = "<p>This is some HTML-formatted text.</p><p>In two paragraphs.</p>"
textlist = text_blocks(html) # Returns a list of paragraphs.
entities = extract_named_entities(textlist)

coaster.nlp.extract_named_entities(text_blocks)
Return a list of named entities extracted from provided text blocks (list of text strings).

76 Chapter 1. Coaster documentation

https://github.com/hasgeek/nodular
https://github.com/hasgeek/flask-commentease

CHAPTER 2

Indices and tables

• genindex

• modindex

• search

77

Coaster Documentation, Release 0.7.0

78 Chapter 2. Indices and tables

Python Module Index

c
coaster.app, 1
coaster.assets, 20
coaster.auth, 35
coaster.db, 76
coaster.logger, 19
coaster.nlp, 76
coaster.sqlalchemy, 46
coaster.sqlalchemy.annotations, 65
coaster.sqlalchemy.columns, 54
coaster.sqlalchemy.comparators, 67
coaster.sqlalchemy.functions, 57
coaster.sqlalchemy.immutable_annotation,

66
coaster.sqlalchemy.mixins, 46
coaster.sqlalchemy.registry, 66
coaster.sqlalchemy.roles, 58
coaster.sqlalchemy.statemanager, 69
coaster.typing, 1
coaster.utils, 21
coaster.utils.classes, 32
coaster.utils.datetime, 28
coaster.utils.markdown, 30
coaster.utils.misc, 21
coaster.utils.text, 29
coaster.utils.tsquery, 31
coaster.views, 36
coaster.views.classview, 42
coaster.views.decorators, 37
coaster.views.misc, 36

79

Coaster Documentation, Release 0.7.0

80 Python Module Index

Index

A
AbortTransition, 76
access_for() (coaster.sqlalchemy.mixins.RoleMixin

method), 52
access_for() (coaster.sqlalchemy.roles.RoleMixin

method), 62
actors_with() (coaster.sqlalchemy.mixins.RoleMixin

method), 53
actors_with() (coaster.sqlalchemy.roles.RoleMixin

method), 62
add() (coaster.sqlalchemy.roles.LazyRoleSet method),

60
add_auth_anchor() (in module coaster.auth), 36
add_auth_attribute() (in module coaster.auth),

36
add_conditional_state()

(coaster.sqlalchemy.statemanager.StateManager
method), 73

add_primary_relationship() (in module
coaster.sqlalchemy.functions), 57

add_route_for() (coaster.views.classview.ClassView
class method), 43

add_state_group()
(coaster.sqlalchemy.statemanager.StateManager
method), 73

add_template_filter() (coaster.app.Flask
method), 3

add_template_global() (coaster.app.Flask
method), 3

add_template_test() (coaster.app.Flask method),
3

add_url_rule() (coaster.app.Flask method), 3
after_request() (coaster.views.classview.ClassView

method), 43
annotation_wrapper() (in module

coaster.sqlalchemy.annotations), 66
app_context() (coaster.app.Flask method), 4
app_ctx_globals_class (coaster.app.Flask

attribute), 4

AssetNotFound, 21
async_to_sync() (coaster.app.Flask method), 4
auto_find_instance_path() (coaster.app.Flask

method), 4
auto_init_default() (in module

coaster.sqlalchemy.functions), 58

B
base_domain_matches() (in module

coaster.utils.misc), 22
BaseIdNameMixin (class in

coaster.sqlalchemy.mixins), 50
BaseMixin (class in coaster.sqlalchemy.mixins), 48
BaseNameMixin (class in coaster.sqlalchemy.mixins),

48
BaseScopedIdMixin (class in

coaster.sqlalchemy.mixins), 50
BaseScopedIdNameMixin (class in

coaster.sqlalchemy.mixins), 50
BaseScopedNameMixin (class in

coaster.sqlalchemy.mixins), 49
before_first_request() (coaster.app.Flask

method), 4
before_first_request_funcs

(coaster.app.Flask attribute), 4
before_request() (coaster.views.classview.ClassView

method), 44
bestmatch() (coaster.sqlalchemy.statemanager.StateManagerWrapper

method), 75
blueprints (coaster.app.Flask attribute), 5
buid (coaster.sqlalchemy.mixins.UuidMixin attribute),

51
buid() (in module coaster.utils.misc), 22
buid2uuid() (in module coaster.utils.misc), 22

C
cached() (in module

coaster.sqlalchemy.immutable_annotation),
66

81

Coaster Documentation, Release 0.7.0

check_constraint()
(coaster.sqlalchemy.statemanager.StateManager
static method), 73

classmethodproperty (class in
coaster.utils.classes), 35

ClassView (class in coaster.views.classview), 42
classview_for() (coaster.sqlalchemy.mixins.UrlForMixin

method), 47
clear_cache() (coaster.sqlalchemy.registry.InstanceRegistry

method), 67
clear_cache_for()

(coaster.sqlalchemy.registry.Registry method),
67

coaster.app (module), 1
coaster.assets (module), 20
coaster.auth (module), 35
coaster.db (module), 76
coaster.logger (module), 19
coaster.nlp (module), 76
coaster.sqlalchemy (module), 46
coaster.sqlalchemy.annotations (module),

65
coaster.sqlalchemy.columns (module), 54
coaster.sqlalchemy.comparators (module),

67
coaster.sqlalchemy.functions (module), 57
coaster.sqlalchemy.immutable_annotation

(module), 66
coaster.sqlalchemy.mixins (module), 46
coaster.sqlalchemy.registry (module), 66
coaster.sqlalchemy.roles (module), 58
coaster.sqlalchemy.statemanager (module),

69
coaster.typing (module), 1
coaster.utils (module), 21
coaster.utils.classes (module), 32
coaster.utils.datetime (module), 28
coaster.utils.markdown (module), 30
coaster.utils.misc (module), 21
coaster.utils.text (module), 29
coaster.utils.tsquery (module), 31
coaster.views (module), 36
coaster.views.classview (module), 42
coaster.views.decorators (module), 37
coaster.views.misc (module), 36
compress_whitespace() (in module

coaster.utils.text), 30
config (coaster.app.Flask attribute), 5
config_class (coaster.app.Flask attribute), 5
configure() (in module coaster.logger), 19
coordinates (coaster.sqlalchemy.mixins.CoordinatesMixin

attribute), 51
CoordinatesMixin (class in

coaster.sqlalchemy.mixins), 51

copy() (coaster.sqlalchemy.roles.LazyRoleSet method),
60

cors() (in module coaster.views.decorators), 41
create_global_jinja_loader()

(coaster.app.Flask method), 5
create_jinja_environment()

(coaster.app.Flask method), 5
create_url_adapter() (coaster.app.Flask

method), 5
current() (coaster.sqlalchemy.statemanager.StateManagerWrapper

method), 75
current_access() (coaster.sqlalchemy.mixins.RoleMixin

method), 53
current_access() (coaster.sqlalchemy.roles.RoleMixin

method), 63
current_auth (in module coaster.auth), 36
current_handler (coaster.views.classview.ClassView

attribute), 44
current_permissions

(coaster.sqlalchemy.mixins.PermissionMixin
attribute), 47

current_roles (coaster.sqlalchemy.mixins.RoleMixin
attribute), 53

current_roles (coaster.sqlalchemy.roles.RoleMixin
attribute), 63

current_view (in module coaster.views.classview), 42

D
data (coaster.sqlalchemy.statemanager.StateTransitionWrapper

attribute), 75
db (in module coaster.db), 76
debug (coaster.app.Flask attribute), 5
declared_attr_roles() (in module

coaster.sqlalchemy.roles), 65
default_config (coaster.app.Flask attribute), 5
deobfuscate_email() (in module

coaster.utils.text), 30
discard() (coaster.sqlalchemy.roles.LazyRoleSet

method), 60
dispatch_request() (coaster.app.Flask method), 5
dispatch_request()

(coaster.views.classview.ClassView method),
44

dispatch_request()
(coaster.views.classview.ModelView method),
45

do_teardown_appcontext() (coaster.app.Flask
method), 6

do_teardown_request() (coaster.app.Flask
method), 6

domain_namespace_match() (in module
coaster.utils.misc), 22

DynamicAssociationProxy (class in
coaster.sqlalchemy.roles), 61

82 Index

Coaster Documentation, Release 0.7.0

E
emit() (coaster.logger.SlackHandler method), 19
emit() (coaster.logger.TelegramHandler method), 19
endpoint_for() (in module coaster.views.misc), 37
ensure_sync() (coaster.app.Flask method), 6
env (coaster.app.Flask attribute), 6
environment variable

FLASK_DEBUG, 13
FLASK_ENV, 6, 13

extensions (coaster.app.Flask attribute), 6
extract_named_entities() (in module

coaster.nlp), 76

F
failsafe_add() (in module

coaster.sqlalchemy.functions), 57
filtered_value() (in module coaster.logger), 20
FilteredValueIndicator (class in

coaster.logger), 19
finalize_request() (coaster.app.Flask method), 7
Flask (class in coaster.app), 1
FLASK_DEBUG, 13
FLASK_ENV, 6, 13
for_tsquery() (in module coaster.utils.tsquery), 31
format() (coaster.logger.LocalVarFormatter method),

19
format_currency() (in module coaster.utils.misc),

22
formatException()

(coaster.logger.LocalVarFormatter method), 19
full_dispatch_request() (coaster.app.Flask

method), 7

G
get() (coaster.sqlalchemy.mixins.BaseNameMixin class

method), 48
get() (coaster.sqlalchemy.mixins.BaseScopedIdMixin

class method), 50
get() (coaster.sqlalchemy.mixins.BaseScopedIdNameMixin

class method), 51
get() (coaster.sqlalchemy.mixins.BaseScopedNameMixin

class method), 49
get_current_url() (in module coaster.views.misc),

37
get_email_domain() (in module coaster.utils.misc),

23
get_next_url() (in module coaster.views.misc), 37
getbool() (in module coaster.utils.misc), 23
got_first_request (coaster.app.Flask attribute), 7
group() (coaster.sqlalchemy.statemanager.StateManagerWrapper

method), 75

H
handle_exception() (coaster.app.Flask method), 7

handle_http_exception() (coaster.app.Flask
method), 7

handle_url_build_error() (coaster.app.Flask
method), 8

handle_user_exception() (coaster.app.Flask
method), 8

has_any() (coaster.sqlalchemy.roles.LazyRoleSet
method), 60

has_coordinates (coaster.sqlalchemy.mixins.CoordinatesMixin
attribute), 51

has_missing_coordinates
(coaster.sqlalchemy.mixins.CoordinatesMixin
attribute), 51

I
IdMixin (class in coaster.sqlalchemy.mixins), 47
immutable() (in module

coaster.sqlalchemy.immutable_annotation),
66

ImmutableColumnError, 66
impl (coaster.sqlalchemy.columns.JsonDict attribute),

54
impl (coaster.sqlalchemy.columns.UrlType attribute), 56
in_() (coaster.sqlalchemy.comparators.SplitIndexComparator

method), 68
init_app() (coaster.views.classview.ClassView class

method), 44
init_app() (in module coaster.app), 18
init_app() (in module coaster.logger), 20
inject_url_defaults() (coaster.app.Flask

method), 8
InspectableSet (class in coaster.utils.classes), 34
instance_path (coaster.app.Flask attribute), 8
InstanceLoader (class in coaster.views.classview),

46
InstanceRegistry (class in

coaster.sqlalchemy.registry), 67
is_always_available

(coaster.views.classview.ClassView attribute),
44

is_available (coaster.sqlalchemy.statemanager.StateTransitionWrapper
attribute), 75

is_available() (coaster.views.classview.ClassView
method), 44

is_collection() (in module coaster.utils.misc), 23
is_conditional (coaster.sqlalchemy.statemanager.ManagedState

attribute), 74
is_direct (coaster.sqlalchemy.statemanager.ManagedState

attribute), 74
is_scalar (coaster.sqlalchemy.statemanager.ManagedState

attribute), 74
is_url_for() (coaster.sqlalchemy.mixins.UrlForMixin

class method), 47

Index 83

Coaster Documentation, Release 0.7.0

isempty() (coaster.sqlalchemy.comparators.Query
method), 67

isoweek_datetime() (in module
coaster.utils.datetime), 29

iter_blueprints() (coaster.app.Flask method), 8

J
jinja_env (coaster.app.Flask attribute), 8
jinja_environment (coaster.app.Flask attribute), 9
jinja_options (coaster.app.Flask attribute), 9
json_decoder (coaster.app.Flask attribute), 9
json_encoder (coaster.app.Flask attribute), 9
JsonDict (class in coaster.sqlalchemy.columns), 54
jsonp() (in module coaster.views.misc), 37

K
KeyRotationWrapper (class in coaster.app), 1

L
label (coaster.sqlalchemy.statemanager.StateManagerWrapper

attribute), 75
LabeledEnum (class in coaster.utils.classes), 32
LazyRoleSet (class in coaster.sqlalchemy.roles), 60
load_dialect_impl()

(coaster.sqlalchemy.columns.JsonDict method),
54

load_dialect_impl()
(coaster.sqlalchemy.columns.UUIDType
method), 55

load_model() (in module coaster.views.decorators),
38

load_models() (in module coaster.views.decorators),
39

loader() (coaster.views.classview.ModelView
method), 45

LocalVarFormatter (class in coaster.logger), 19
log_exception() (coaster.app.Flask method), 9
logger (coaster.app.Flask attribute), 9

M
make_config() (coaster.app.Flask method), 9
make_default_options_response()

(coaster.app.Flask method), 9
make_id() (coaster.sqlalchemy.mixins.BaseScopedIdMixin

method), 50
make_name() (coaster.sqlalchemy.mixins.BaseIdNameMixin

method), 50
make_name() (coaster.sqlalchemy.mixins.BaseNameMixin

method), 49
make_name() (coaster.sqlalchemy.mixins.BaseScopedIdNameMixin

method), 51
make_name() (coaster.sqlalchemy.mixins.BaseScopedNameMixin

method), 49

make_name() (in module coaster.utils.misc), 24
make_response() (coaster.app.Flask method), 9
make_shell_context() (coaster.app.Flask

method), 10
make_timestamp_columns() (in module

coaster.sqlalchemy.functions), 57
ManagedState (class in

coaster.sqlalchemy.statemanager), 74
ManagedStateGroup (class in

coaster.sqlalchemy.statemanager), 74
ManagedStateWrapper (class in

coaster.sqlalchemy.statemanager), 75
markdown() (in module coaster.utils.markdown), 30
md5sum() (in module coaster.utils.misc), 25
midnight_to_utc() (in module

coaster.utils.datetime), 29
model (coaster.views.classview.ModelView attribute), 45
ModelView (class in coaster.views.classview), 44

N
name (coaster.app.Flask attribute), 10
name (coaster.utils.classes.NameTitle attribute), 32
namespace_from_url() (in module

coaster.utils.misc), 25
NameTitle (class in coaster.utils.classes), 32
nary_op() (in module coaster.utils.misc), 25
newpin() (in module coaster.utils.misc), 25
newsecret() (in module coaster.utils.misc), 26
NoIdMixin (class in coaster.sqlalchemy.mixins), 48
normalize_spaces() (in module coaster.utils.text),

30
normalize_spaces_multiline() (in module

coaster.utils.text), 30
notempty() (coaster.sqlalchemy.comparators.Query

method), 67
nullint() (in module coaster.utils.misc), 26
nullstr() (in module coaster.utils.misc), 26

O
offered_roles (coaster.sqlalchemy.roles.RoleGrantABC

attribute), 60
one_or_404() (coaster.sqlalchemy.comparators.Query

method), 67
open_instance_resource() (coaster.app.Flask

method), 10

P
parse_isoformat() (in module

coaster.utils.datetime), 29
ParseError (in module coaster.utils.datetime), 29
permanent_session_lifetime

(coaster.app.Flask attribute), 10
PermissionMixin (class in

coaster.sqlalchemy.mixins), 47

84 Index

Coaster Documentation, Release 0.7.0

permissions() (coaster.sqlalchemy.mixins.BaseScopedIdMixin
method), 50

permissions() (coaster.sqlalchemy.mixins.BaseScopedNameMixin
method), 49

permissions() (coaster.sqlalchemy.mixins.PermissionMixin
method), 47

pprint_with_indent() (in module coaster.logger),
20

preprocess_request() (coaster.app.Flask
method), 11

preserve_context_on_exception
(coaster.app.Flask attribute), 11

process_bind_param()
(coaster.sqlalchemy.columns.JsonDict method),
54

process_bind_param()
(coaster.sqlalchemy.columns.UrlType method),
56

process_bind_param()
(coaster.sqlalchemy.columns.UUIDType
method), 55

process_literal_param()
(coaster.sqlalchemy.columns.UUIDType
method), 55

process_response() (coaster.app.Flask method),
11

process_result_value()
(coaster.sqlalchemy.columns.JsonDict method),
54

process_result_value()
(coaster.sqlalchemy.columns.UrlType method),
56

process_result_value()
(coaster.sqlalchemy.columns.UUIDType
method), 56

propagate_exceptions (coaster.app.Flask at-
tribute), 11

python_type (coaster.sqlalchemy.columns.UUIDType
attribute), 56

Q
Query (class in coaster.sqlalchemy.comparators), 67
query (coaster.views.classview.ModelView attribute), 45
query_class (coaster.sqlalchemy.mixins.IdMixin at-

tribute), 47
query_class (coaster.sqlalchemy.mixins.TimestampMixin

attribute), 47

R
raise_routing_exception() (coaster.app.Flask

method), 11
register_blueprint() (coaster.app.Flask

method), 11

register_endpoint()
(coaster.sqlalchemy.mixins.UrlForMixin class
method), 48

register_view_for()
(coaster.sqlalchemy.mixins.UrlForMixin class
method), 48

Registry (class in coaster.sqlalchemy.registry), 67
RegistryMixin (class in coaster.sqlalchemy.mixins),

53
RegistryMixin (class in coaster.sqlalchemy.registry),

67
render_with() (in module coaster.views.decorators),

40
RepeatValueIndicator (class in coaster.logger),

19
request_class (coaster.app.Flask attribute), 12
request_context() (coaster.app.Flask method), 12
request_has_auth() (in module coaster.auth), 36
requestargs() (in module coaster.views.decorators),

37
requestform() (in module coaster.views.decorators),

38
requestquery() (in module

coaster.views.decorators), 38
RequestTypeError, 37
RequestValueError, 37
require() (coaster.assets.VersionedAssets method),

21
require_one_of() (in module coaster.utils.misc), 26
requires() (coaster.sqlalchemy.statemanager.StateManager

method), 74
requires_permission() (in module

coaster.views.decorators), 41
requires_roles() (in module

coaster.views.classview), 46
reserved_names (coaster.sqlalchemy.mixins.BaseNameMixin

attribute), 49
reserved_names (coaster.sqlalchemy.mixins.BaseScopedNameMixin

attribute), 49
response_class (coaster.app.Flask attribute), 12
RoleAccessProxy (class in coaster.sqlalchemy.roles),

60
RoleGrantABC (class in coaster.sqlalchemy.roles), 60
RoleMixin (class in coaster.sqlalchemy.mixins), 52
RoleMixin (class in coaster.sqlalchemy.roles), 61
roles_for() (coaster.sqlalchemy.mixins.RoleMixin

method), 53
roles_for() (coaster.sqlalchemy.roles.RoleMixin

method), 63
RotatingKeySecureCookieSessionInterface

(class in coaster.app), 1
route() (in module coaster.views.classview), 45
route_model_map (coaster.views.classview.ModelView

attribute), 45

Index 85

Coaster Documentation, Release 0.7.0

rulejoin() (in module coaster.views.classview), 42
run() (coaster.app.Flask method), 12

S
sanitize_html() (in module coaster.utils.text), 30
secret_key (coaster.app.Flask attribute), 13
select_jinja_autoescape() (coaster.app.Flask

method), 13
send_file_max_age_default (coaster.app.Flask

attribute), 13
session_cookie_name (coaster.app.Flask at-

tribute), 13
session_interface (coaster.app.Flask attribute),

13
shell_context_processor() (coaster.app.Flask

method), 13
shell_context_processors (coaster.app.Flask

attribute), 13
short_title (coaster.sqlalchemy.mixins.BaseScopedNameMixin

attribute), 49
should_ignore_error() (coaster.app.Flask

method), 13
SimpleDecorator (in module coaster.typing), 1
SimpleSpec (class in coaster.assets), 20
simplify_text() (in module coaster.utils.text), 30
SlackHandler (class in coaster.logger), 19
sorted_timezones() (in module

coaster.utils.datetime), 29
SplitIndexComparator (class in

coaster.sqlalchemy.comparators), 68
SqlSplitIdComparator (class in

coaster.sqlalchemy.comparators), 69
SqlUuidB58Comparator (class in

coaster.sqlalchemy.comparators), 69
SqlUuidB64Comparator (class in

coaster.sqlalchemy.comparators), 69
SqlUuidHexComparator (class in

coaster.sqlalchemy.comparators), 69
StateManager (class in

coaster.sqlalchemy.statemanager), 73
StateManagerWrapper (class in

coaster.sqlalchemy.statemanager), 75
StateTransition (class in

coaster.sqlalchemy.statemanager), 74
StateTransitionError, 75
StateTransitionWrapper (class in

coaster.sqlalchemy.statemanager), 75

T
teardown_appcontext() (coaster.app.Flask

method), 14
teardown_appcontext_funcs (coaster.app.Flask

attribute), 14
TelegramHandler (class in coaster.logger), 19

template_filter() (coaster.app.Flask method), 14
template_global() (coaster.app.Flask method), 14
template_test() (coaster.app.Flask method), 14
templates_auto_reload (coaster.app.Flask

attribute), 15
test_cli_runner() (coaster.app.Flask method), 15
test_cli_runner_class (coaster.app.Flask

attribute), 15
test_client() (coaster.app.Flask method), 15
test_client_class (coaster.app.Flask attribute),

16
test_request_context() (coaster.app.Flask

method), 16
testing (coaster.app.Flask attribute), 17
text_blocks() (in module coaster.utils.text), 30
TimestampMixin (class in

coaster.sqlalchemy.mixins), 47
title (coaster.utils.classes.NameTitle attribute), 32
title_for_name (coaster.sqlalchemy.mixins.BaseIdNameMixin

attribute), 50
title_for_name (coaster.sqlalchemy.mixins.BaseNameMixin

attribute), 49
title_for_name (coaster.sqlalchemy.mixins.BaseScopedIdNameMixin

attribute), 51
title_for_name (coaster.sqlalchemy.mixins.BaseScopedNameMixin

attribute), 49
transition() (coaster.sqlalchemy.statemanager.StateManager

method), 74
transition_after (in module

coaster.sqlalchemy.statemanager), 76
transition_before (in module

coaster.sqlalchemy.statemanager), 76
transition_error (in module

coaster.sqlalchemy.statemanager), 76
transition_exception (in module

coaster.sqlalchemy.statemanager), 76
transitions() (coaster.sqlalchemy.statemanager.StateManagerWrapper

method), 75
transitions_for()

(coaster.sqlalchemy.statemanager.StateManagerWrapper
method), 75

trap_http_exception() (coaster.app.Flask
method), 17

try_trigger_before_first_request_functions()
(coaster.app.Flask method), 17

U
ulstrip() (in module coaster.utils.text), 30
unicode_http_header() (in module

coaster.utils.misc), 26
update_template_context() (coaster.app.Flask

method), 17
upsert() (coaster.sqlalchemy.mixins.BaseNameMixin

class method), 49

86 Index

Coaster Documentation, Release 0.7.0

upsert() (coaster.sqlalchemy.mixins.BaseScopedNameMixin
class method), 49

url_build_error_handlers (coaster.app.Flask
attribute), 17

url_change_check() (in module
coaster.views.classview), 45

url_for() (coaster.sqlalchemy.mixins.UrlForMixin
method), 48

url_for_endpoints
(coaster.sqlalchemy.mixins.UrlForMixin
attribute), 48

url_id (coaster.sqlalchemy.mixins.IdMixin attribute),
47

url_id_name (coaster.sqlalchemy.mixins.BaseIdNameMixin
attribute), 50

url_id_name (coaster.sqlalchemy.mixins.BaseScopedIdNameMixin
attribute), 51

url_map (coaster.app.Flask attribute), 17
url_map_class (coaster.app.Flask attribute), 18
url_name (coaster.sqlalchemy.mixins.BaseIdNameMixin

attribute), 50
url_name (coaster.sqlalchemy.mixins.BaseScopedIdNameMixin

attribute), 51
url_name_uuid_b58

(coaster.sqlalchemy.mixins.BaseIdNameMixin
attribute), 50

url_name_uuid_b58
(coaster.sqlalchemy.mixins.BaseScopedIdNameMixin
attribute), 51

url_parser (coaster.sqlalchemy.columns.UrlType at-
tribute), 57

url_rule_class (coaster.app.Flask attribute), 18
UrlChangeCheck (class in coaster.views.classview),

46
UrlDict (class in coaster.sqlalchemy.mixins), 47
UrlForMixin (class in coaster.sqlalchemy.mixins), 47
UrlForView (class in coaster.views.classview), 46
urls (coaster.sqlalchemy.mixins.UrlForMixin attribute),

48
UrlType (class in coaster.sqlalchemy.columns), 56
urstrip() (in module coaster.utils.text), 30
use_x_sendfile (coaster.app.Flask attribute), 18
ustrip() (in module coaster.utils.text), 30
utcnow() (in module coaster.utils.datetime), 29
uuid1mc() (in module coaster.utils.misc), 27
uuid1mc_from_datetime() (in module

coaster.utils.misc), 27
uuid2buid() (in module coaster.utils.misc), 27
uuid_b58 (coaster.sqlalchemy.mixins.UuidMixin at-

tribute), 51
uuid_b58() (in module coaster.utils.misc), 27
uuid_b64 (coaster.sqlalchemy.mixins.UuidMixin at-

tribute), 52
uuid_b64() (in module coaster.utils.misc), 27

uuid_from_base58() (in module coaster.utils.misc),
28

uuid_from_base64() (in module coaster.utils.misc),
28

uuid_hex (coaster.sqlalchemy.mixins.UuidMixin at-
tribute), 52

uuid_to_base58() (in module coaster.utils.misc), 28
uuid_to_base64() (in module coaster.utils.misc), 28
UuidMixin (class in coaster.sqlalchemy.mixins), 51
UUIDType (class in coaster.sqlalchemy.columns), 55

V
valid_username() (in module coaster.utils.misc), 28
value (coaster.sqlalchemy.statemanager.StateManagerWrapper

attribute), 75
VersionedAssets (class in coaster.assets), 20
view_args (coaster.views.classview.ClassView at-

tribute), 44
view_for() (coaster.sqlalchemy.mixins.UrlForMixin

method), 48
view_for_endpoints

(coaster.sqlalchemy.mixins.UrlForMixin
attribute), 48

viewdata() (in module coaster.views.classview), 45

W
with_roles() (in module coaster.sqlalchemy.roles),

63
wsgi_app() (coaster.app.Flask method), 18

Index 87

	Coaster documentation
	Coaster types
	App configuration
	Logger
	Assets
	Utilities
	Miscellaneous utilities
	Date, time and timezone utilities
	Text processing utilities
	Markdown processor
	PostgreSQL query processor
	Utility classes
	Authentication management
	View helpers
	Miscellaneous view helpers
	View decorators
	Class-based views
	SQLAlchemy patterns
	SQLAlchemy mixin classes
	SQLAlchemy column types
	Helper functions
	Role-based access control
	SQLAlchemy attribute annotations
	Immutable annotation
	Model helper registry
	Enhanced query and custom comparators
	States and transitions
	Database session and instance
	Natural language processing

	Indices and tables
	Python Module Index
	Index

